Quasiparticles for a quantum dot array in graphene and the associated magnetoplasmons

被引:6
|
作者
Berman, Oleg L. [1 ]
Gumbs, Godfrey [2 ,3 ,4 ]
Echenique, P. M. [3 ,4 ]
机构
[1] CUNY, Dept Phys, New York City Coll Technol, Brooklyn, NY 11201 USA
[2] CUNY, Dept Phys & Astron, Hunter Coll, New York, NY 10065 USA
[3] UPV, CSIC, DIPC, Dept Fis Mat, San Sebastian 20018, Basque Country, Spain
[4] UPV, CSIC, Ctr Mixto, DIPC, San Sebastian 20018, Basque Country, Spain
来源
PHYSICAL REVIEW B | 2009年 / 79卷 / 07期
关键词
carbon; conduction bands; eigenvalues and eigenfunctions; nanostructured materials; plasmons; quantum dots; tight-binding calculations; valence bands; wave functions; INTERCALATED GRAPHITE; DIELECTRIC FUNCTION; MAGNETIC-FIELD; PLASMONS; EXCITATIONS; LATTICE; GAS;
D O I
10.1103/PhysRevB.79.075418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the low-frequency magnetoplasmon excitation spectrum for a square array of quantum dots on a two-dimensional (2D) graphene layer. The confining potential is linear in the distance from the center of the quantum dot. The electron eigenstates in a magnetic field and confining potential are mapped onto a 2D plane of electron-hole pairs in an effective magnetic field without any confinement. The tight-binding model for the array of quantum dots leads to a wave function with interdot mixing of the quantum numbers associated with an isolated quantum dot. For chosen confinement, magnetic field, wave vector, and frequency, we plot the dispersion equation as a function of the period d of the lattice. We obtain those values of d which yield collective plasma excitations. For the allowed transitions between the valence and conduction bands in our calculations, we obtain plasmons when d less than or similar to 100 A.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Magnetoplasmons and quasiparticles for quantum-dots in graphene
    Berman, Oleg L.
    Gumbs, Godfrey
    PIERS 2008 CAMBRIDGE, PROCEEDINGS, 2008, : 800 - +
  • [2] Deformation effect on graphene quantum dot/graphane and silicene quantum dot/silicane array
    Wu, Bi-Ru
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 193
  • [3] Patterned Hydrogenation of Graphene: Magnetic Quantum Dot Array
    Wu, Menghao
    Wu, Xiaojun
    Gao, Yi
    Zeng, Xiao Cheng
    JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (01): : 139 - 142
  • [4] TUNNELING AND ANTICROSSING OF EDGE MAGNETOPLASMONS IN A QUANTUM-DOT SUPERLATTICE
    HUANG, DH
    GUMBS, G
    PHYSICAL REVIEW B, 1991, 43 (14): : 12039 - 12041
  • [5] NONLOCAL PERIMETER MAGNETOPLASMONS IN A PLANAR ARRAY OF NARROW QUANTUM RINGS
    HUANG, DH
    GUMBS, G
    PHYSICAL REVIEW B, 1992, 46 (07): : 4147 - 4154
  • [6] Quasiparticles, plasmarons, and quantum spectral function in bilayer graphene
    Sensarma, Rajdeep
    Hwang, E. H.
    Das Sarma, S.
    PHYSICAL REVIEW B, 2011, 84 (04)
  • [7] Localizing Fractional Quasiparticles on Graphene Quantum Hall Antidots
    Mills, S. M.
    Averin, D., V
    Du, X.
    PHYSICAL REVIEW LETTERS, 2020, 125 (22)
  • [8] Teleportation on a quantum dot array
    de Pasquale, F
    Giorgi, G
    Paganelli, S
    PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 120502 - 1
  • [9] Teleportation on a quantum dot array
    de Pasquale, F
    Giorgi, G
    Paganelli, S
    QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTING, 2004, 734 : 48 - 51
  • [10] Edge magnetoplasmons in graphene
    Petkovic, Ivana
    Williams, F. I. B.
    Glattli, D. Christian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (09)