Polysulfide Flow Batteries Enabled by Percolating Nanoscale Conductor Networks

被引:208
作者
Fan, Frank Y. [1 ]
Woodford, William H. [1 ]
Li, Zheng [1 ]
Baram, Nir [1 ]
Smith, Kyle C. [1 ]
Helal, Ahmed [2 ]
McKinley, Gareth H. [2 ]
Carter, W. Craig [1 ]
Chiang, Yet-Ming [1 ]
机构
[1] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[2] MIT, Dept Mech Engn, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Nanoparticle; percolation; battery; electrochemistry; lithium sulfur; flow battery; SULFUR BATTERIES; ENERGY-STORAGE; EFFICIENCY; PARTICLES; CATHODE;
D O I
10.1021/nl500740t
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at similar to vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time.
引用
收藏
页码:2210 / 2218
页数:9
相关论文
共 31 条
[1]   On the Surface Chemical Aspects of Very High Energy Density, Rechargeable Li-Sulfur Batteries [J].
Aurbach, Doron ;
Pollak, Elad ;
Elazari, Ran ;
Salitra, Gregory ;
Kelley, C. Scordilis ;
Affinito, John .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (08) :A694-A702
[2]  
Bird R. B., 1982, REV CHEM ENG, V1, P1
[3]   Recent progress and remaining challenges in sulfur-based lithium secondary batteries - a review [J].
Bresser, Dominic ;
Passerini, Stefano ;
Scrosati, Bruno .
CHEMICAL COMMUNICATIONS, 2013, 49 (90) :10545-10562
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Modeling the hydrodynamic and electrochemical efficiency of semi-solid flow batteries [J].
Brunini, Victor E. ;
Chiang, Yet-Ming ;
Carter, W. Craig .
ELECTROCHIMICA ACTA, 2012, 69 :301-307
[6]   An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery [J].
Brushett, Fikile R. ;
Vaughey, John T. ;
Jansen, Andrew N. .
ADVANCED ENERGY MATERIALS, 2012, 2 (11) :1390-1396
[7]   Li-S batteries: simple approaches for superior performance [J].
Demir-Cakan, Rezan ;
Morcrette, Mathieu ;
Gangulibabu ;
Gueguen, Aurelie ;
Dedryvere, Remi ;
Tarascon, Jean-Marie .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (01) :176-182
[8]   Semi-Solid Lithium Rechargeable Flow Battery [J].
Duduta, Mihai ;
Ho, Bryan ;
Wood, Vanessa C. ;
Limthongkul, Pimpa ;
Brunini, Victor E. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED ENERGY MATERIALS, 2011, 1 (04) :511-516
[9]   Electrical Energy Storage for the Grid: A Battery of Choices [J].
Dunn, Bruce ;
Kamath, Haresh ;
Tarascon, Jean-Marie .
SCIENCE, 2011, 334 (6058) :928-935
[10]   Non-Aqueous Li-Based Redox Flow Batteries [J].
Hamelet, S. ;
Tzedakis, T. ;
Leriche, J. -B. ;
Sailler, S. ;
Larcher, D. ;
Taberna, P. -L. ;
Simon, P. ;
Tarascona, J. -M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (08) :A1360-A1367