Regularity results for a class of obstacle problems in Heisenberg groups

被引:5
|
作者
Bigolin, Francesco [1 ]
机构
[1] Dipartimento Matemat Trento, I-38123 Povo, Trento, Italy
关键词
obstacle problem; weak solution; regularity; Heisenberg group; P-HARMONIC FUNCTIONS; EQUATIONS; GRADIENT; C-1; C-ALPHA-REGULARITY; BOUNDARY;
D O I
10.1007/s10492-013-0027-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study regularity results for solutions u is an element of HW (1,p) (Omega) to the obstacle problem integral(Omega) A(x, del(H)u)del(H)(v - u) d x >= 0 for all(v) is an element of K-psi, (u) (Omega) such that u >= psi a.e. in Omega, where K-psi, (u) (Omega) = {v is an element of HW (1,p) (Omega): v - u is an element of HW0 (1,p) (Omega)v >= psi a.e in Omega}, in Heisenberg groups H (n) . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. T psi is an element of HWloc1,p (Omega) double right arrow T u is an element of L-loc(p) (Omega), vertical bar del(H)psi vertical bar(p) is an element of L-loc(q) (Omega) double right arrow vertical bar del(H)u vertical bar(p) is an element of L-loc(q) (Omega), where 2 < p < 4, q > 1.
引用
收藏
页码:531 / 554
页数:24
相关论文
共 50 条