Regularity results for a class of obstacle problems in Heisenberg groups

被引:5
|
作者
Bigolin, Francesco [1 ]
机构
[1] Dipartimento Matemat Trento, I-38123 Povo, Trento, Italy
关键词
obstacle problem; weak solution; regularity; Heisenberg group; P-HARMONIC FUNCTIONS; EQUATIONS; GRADIENT; C-1; C-ALPHA-REGULARITY; BOUNDARY;
D O I
10.1007/s10492-013-0027-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study regularity results for solutions u is an element of HW (1,p) (Omega) to the obstacle problem integral(Omega) A(x, del(H)u)del(H)(v - u) d x >= 0 for all(v) is an element of K-psi, (u) (Omega) such that u >= psi a.e. in Omega, where K-psi, (u) (Omega) = {v is an element of HW (1,p) (Omega): v - u is an element of HW0 (1,p) (Omega)v >= psi a.e in Omega}, in Heisenberg groups H (n) . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. T psi is an element of HWloc1,p (Omega) double right arrow T u is an element of L-loc(p) (Omega), vertical bar del(H)psi vertical bar(p) is an element of L-loc(q) (Omega) double right arrow vertical bar del(H)u vertical bar(p) is an element of L-loc(q) (Omega), where 2 < p < 4, q > 1.
引用
收藏
页码:531 / 554
页数:24
相关论文
共 50 条
  • [21] LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS
    高红亚
    郭静
    左亚丽
    褚玉明
    ActaMathematicaScientia, 2010, 30 (01) : 208 - 214
  • [22] LOCAL REGULARITY RESULT IN OBSTACLE PROBLEMS
    Gao Hongya
    Guo Jing
    Zuo Yali
    Chu Yuming
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) : 208 - 214
  • [23] HWloc 2,2 -regularity for p-harmonic functions in Heisenberg groups
    Liu, Jiayin
    Peng, Fa
    Zhou, Yuan
    ADVANCES IN CALCULUS OF VARIATIONS, 2021, : 379 - 390
  • [24] Overdetermined problems in groups of Heisenberg type: Conjectures and partial results
    Garofalo, Nicola
    Vassilev, Dimiter
    JOURNAL OF FUNCTIONAL ANALYSIS, 2024, 287 (10)
  • [25] Existence Problems on Heisenberg Groups Involving Hardy and Critical Terms
    Bordoni, Sara
    Filippucci, Roberta
    Pucci, Patrizia
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1887 - 1917
  • [26] Global regularity and stability of solutions to obstacle problems with nonstandard growth
    Eleuteri, Michela
    Harjulehto, Petteri
    Lukkari, Teemu
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 147 - 181
  • [27] C1,α-REGULARITY FOR VARIATIONAL PROBLEMS IN THE HEISENBERG GROUP
    Mukherjee, Shirsho
    Zhong, Xiao
    ANALYSIS & PDE, 2021, 14 (02): : 567 - 594
  • [28] LOCAL REGULARITY RESULT FOR SOLUTIONS OF OBSTACLE PROBLEMS
    高红亚
    田会英
    Acta Mathematica Scientia, 2004, (01) : 71 - 74
  • [29] On the regularity of the free boundary for quasilinear obstacle problems
    Challal, S.
    Lyaghfouri, A.
    Rodrigues, J. F.
    Teymurazyan, R.
    INTERFACES AND FREE BOUNDARIES, 2014, 16 (03) : 359 - 394
  • [30] LOCAL REGULARITY FOR SOLUTIONS TO OBSTACLE PROBLEMS WITH WEIGHT
    Gao, Hong-Ya
    Guo, Jing
    Qiao, Jin-Jing
    Liang, Shuang
    BOUNDARY VALUE PROBLEMS, INTEGRAL EQUATIONS AND RELATED PROBLEMS, 2011, : 163 - 169