Regularity results for a class of obstacle problems in Heisenberg groups

被引:5
|
作者
Bigolin, Francesco [1 ]
机构
[1] Dipartimento Matemat Trento, I-38123 Povo, Trento, Italy
关键词
obstacle problem; weak solution; regularity; Heisenberg group; P-HARMONIC FUNCTIONS; EQUATIONS; GRADIENT; C-1; C-ALPHA-REGULARITY; BOUNDARY;
D O I
10.1007/s10492-013-0027-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study regularity results for solutions u is an element of HW (1,p) (Omega) to the obstacle problem integral(Omega) A(x, del(H)u)del(H)(v - u) d x >= 0 for all(v) is an element of K-psi, (u) (Omega) such that u >= psi a.e. in Omega, where K-psi, (u) (Omega) = {v is an element of HW (1,p) (Omega): v - u is an element of HW0 (1,p) (Omega)v >= psi a.e in Omega}, in Heisenberg groups H (n) . In particular, we obtain weak differentiability in the T-direction and horizontal estimates of Calderon-Zygmund type, i.e. T psi is an element of HWloc1,p (Omega) double right arrow T u is an element of L-loc(p) (Omega), vertical bar del(H)psi vertical bar(p) is an element of L-loc(q) (Omega) double right arrow vertical bar del(H)u vertical bar(p) is an element of L-loc(q) (Omega), where 2 < p < 4, q > 1.
引用
收藏
页码:531 / 554
页数:24
相关论文
共 50 条
  • [1] Regularity results for a class of obstacle problems in Heisenberg groups
    Francesco Bigolin
    Applications of Mathematics, 2013, 58 : 531 - 554
  • [2] Regularity results for quasilinear degenerate elliptic obstacle problems in Carnot groups
    Du, Guangwei
    Niu, Pengcheng
    Han, Junqiang
    RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA, 2019, 141 : 65 - 105
  • [3] Regularity results for solutions to a class of obstacle problems
    Grimaldi, Antonio Giuseppe
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 62
  • [4] Regularity results for a class of obstacle problems with nonstandard growth
    Ok, Jihoon
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 444 (02) : 957 - 979
  • [5] Regularity results for a class of non-differentiable obstacle problems
    Eleuteri, Michela
    di Napoli, Antonia Passarelli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 194 (194)
  • [6] Regularity results for solutions to obstacle problems with Sobolev coefficients
    Caselli, Michele
    Gentile, Andrea
    Giova, Raffaella
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) : 8308 - 8330
  • [7] Gradient regularity for a class of elliptic obstacle problems
    Giova, Raffaella
    Grimaldi, Antonio Giuseppe
    Torricelli, Andrea
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (02)
  • [8] Besov Regularity Estimates for a Class of Obstacle Problems with Variable Exponents
    Ma, Rumeng
    Yao, Fengping
    ACTA APPLICANDAE MATHEMATICAE, 2025, 196 (01)
  • [9] Regularity results for solutions to elliptic obstacle problems in limit cases
    Farroni, Fernando
    Manzo, Gianluigi
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (03)
  • [10] Lipschitz continuity results for a class of obstacle problems
    Benassi, Carlo
    Caselli, Michele
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2020, 31 (01) : 191 - 210