A new proof of the Erdos-Ko-Rado theorem for intersecting families of permutations

被引:67
作者
Godsil, Chris [1 ]
Meagher, Karen [2 ]
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Univ Regina, Dept Math & Stat, Regina, SK S4S 0A2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
VECTOR-SPACES; SETS; SYSTEMS; GRAPHS;
D O I
10.1016/j.ejc.2008.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S(n) be the symmetric group on n points. A subset S of S(n) is intersecting if for any pair of permutations pi, sigma in S there is a point i epsilon {1....,n) such that pi(i) = sigma(i). Deza and Frankl JP. Frankl, M. Deza, On the maximum number of permutations with given maximal or minimal distance, J. Combin. Theory Ser. A 22 (3) (1977) 352-3601 proved that if S subset of S(n) is intersecting then |S| <= (n - 1)|. Further, Cameron and Ku [P]. Cameron, C.Y. Ku, Intersecting families of permutations, European J. Combin. 24 (7) (2003) 881-890] showed that the only sets that meet this bound are the cosets of a stabilizer of a point. In this paper we give a very different proof of this same result. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:404 / 414
页数:11
相关论文
共 23 条
[1]   Cycle decompositions IV: complete directed graphs and fixed length directed cycles [J].
Alspach, B ;
Gavlas, H ;
Sajna, M ;
Verrall, H .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 103 (01) :165-208
[2]  
[Anonymous], 2005, ELECT J COMBIN
[3]  
[Anonymous], THESIS U WATERLOO WA
[4]  
Bannai Eiichi, 1984, Algebraic Combinatorics I: Association Schemes
[5]  
BERGE C, 1975, ANN MAT PUR APPL, V103, P3
[6]   Intersecting families of permutations [J].
Cameron, PJ ;
Ku, CY .
EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (07) :881-890
[7]  
Delsarte P., 1973, PHILIPS RES REP S, V10
[8]   ERDOS-KO-RADO THEOREM - 22 YEARS LATER [J].
DEZA, M ;
FRANKL, P .
SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1983, 4 (04) :419-431
[9]   INTERSECTION THEOREMS FOR SYSTEMS OF FINITE SETS [J].
ERDOS, P ;
RADO, R ;
KO, C .
QUARTERLY JOURNAL OF MATHEMATICS, 1961, 12 (48) :313-&
[10]   MAXIMUM NUMBER OF PERMUTATIONS WITH GIVEN MAXIMAL OR MINIMAL DISTANCE [J].
FRANKL, P ;
DEZA, M .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1977, 22 (03) :352-360