Rembrandt - a named-entity recognition framework

被引:0
|
作者
Cardoso, Nuno [1 ]
机构
[1] Univ Lisbon, Fac Sci, LaSIGE, P-1699 Lisbon, Portugal
来源
LREC 2012 - EIGHTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION | 2012年
关键词
Named entity recognition; annotation framework; entity grounding; WEB;
D O I
暂无
中图分类号
H0 [语言学];
学科分类号
030303 ; 0501 ; 050102 ;
摘要
Rembrandt is a named entity recognition system specially crafted to annotate documents by classifying named entities and ground them into unique identifiers. Rembrandt played an important role within our research over geographic IR, thus evolving into a more capable framework where documents can be annotated, manually curated and indexed. The goal of this paper is to present Rembrandt's simple but powerful annotation framework to the NLP community.
引用
收藏
页码:1240 / 1243
页数:4
相关论文
共 50 条
  • [1] Named-entity recognition for Polish with SProUT
    Piskorski, J
    INTELLIGENT MEDIA TECHNOLOGY FOR COMMUNICATIVE INTELLIGENCE, 2005, 3490 : 122 - 133
  • [2] Related Work in Named-Entity Recognition
    不详
    IEEE INTELLIGENT SYSTEMS, 2015, 30 (06) : 52 - 52
  • [3] Efficacy of Arabic Named-Entity Recognition
    Al-Shoukry, Suhad
    Omar, Nazlia
    5TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND INFORMATICS 2015, 2015, : 506 - 510
  • [4] Named-entity recognition in Turkish legal texts
    Cetindag, Can
    Yazicioglu, Berkay
    Koc, Aykut
    NATURAL LANGUAGE ENGINEERING, 2023, 29 (03) : 615 - 642
  • [5] Clinical named-entity recognition: A short comparison
    Lossio-Ventura, Juan Antonio
    Boussard, Sebastien
    Morzan, Juandiego
    Hernandez-Boussard, Tina
    2019 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2019, : 1548 - 1550
  • [6] OOV Sensitive Named-Entity Recognition in Speech
    Parada, Carolina
    Dredze, Mark
    Jelinek, Frederick
    12TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION 2011 (INTERSPEECH 2011), VOLS 1-5, 2011, : 2096 - +
  • [7] Document Theme Extraction Using Named-Entity Recognition
    Nagrale, Deepali
    Khatavkar, Vaibhav
    Kulkarni, Parag
    COMPUTING, COMMUNICATION AND SIGNAL PROCESSING, ICCASP 2018, 2019, 810 : 499 - 509
  • [8] Named-entity recognition from Greek and English texts
    Karkaletsis, Vangelis
    Paliouras, Georgios
    Petasis, Georgios
    Manousopoulou, Natasa
    Spyropoulos, Constantine D.
    Journal of Intelligent and Robotic Systems: Theory and Applications, 1999, 26 (02): : 123 - 135
  • [9] Effective vector representation for the Korean named-entity recognition
    Kwon, Sunjae
    Ko, Youngjoong
    Seo, Jungyun
    PATTERN RECOGNITION LETTERS, 2019, 117 : 52 - 57
  • [10] Transfer Learning for Named-Entity Recognition with Neural Networks
    Lee, Ji Young
    Dernoncourt, Franck
    Szolovits, Peter
    PROCEEDINGS OF THE ELEVENTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2018), 2018, : 4470 - 4473