Crosstalk-Aware Spectrum Defragmentation Based on Spectrum Compactness in Space Division Multiplexing Enabled Elastic Optical Networks With Multicore Fiber

被引:62
作者
Zhao, Yongli [1 ]
Hu, Liyazhou [1 ]
Zhu, Ruijie [2 ]
Yu, Xiaosong [1 ]
Wang, Xinbo [3 ]
Zhang, Jie [1 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
[2] Zhengzhou Univ, Zhengzhou 450066, Henan, Peoples R China
[3] Facebook Inc, Menlo Pk, CA 94025 USA
关键词
SDM-EONs; spectrum defragmentation; crosstalk-aware; spectrum compactness (SC); CORE; ALLOCATION;
D O I
10.1109/ACCESS.2018.2795102
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Achievable capacity of optical fiber is approaching its physical limitation in frequency domain. Space division multiplexing (SDM) technology can scale the network capacity using multi-core fiber and multi-mode fiber. In order to provide high-speed transmission services with fine granularities, SDM enabled elastic optical networks (SDM-EONs) become a promising candidate of future optical transport networks. However, since the spectrum status in SDM-EONs becomes more complex with the introduction of spatial dimension, the issue of spectrum fragmentation will be more serious in SDM-EONs compared in simple EONs. To remedy the issue of spectrum fragmentation in SDM-EONs, we propose a crosstalk-aware spectrum defragmentation (CASD) algorithm based on a metric, i.e., spectrum compactness (SC), which we define to measure the spectrum status in the SDM-EONs. Simulation results show that the proposed CASD algorithm can achieve better performance than a benchmark algorithm in terms of blocking probability and spectrum utilization. We also compare CASD algorithm with different SC thresholds in bandwidth blocking probability and spectrum utilization. Among them, CASD algorithm with SC threshold of 50 performs the best. It can achieve low spectrum moving times as well as low defragmentation latency.
引用
收藏
页码:15346 / 15355
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 2011, P ECOC
[2]   Optical Flow Switching Networks [J].
Chan, Vincent W. S. .
PROCEEDINGS OF THE IEEE, 2012, 100 (05) :1079-1091
[3]   Push-Pull Defragmentation Without Traffic Disruption in Flexible Grid Optical Networks [J].
Cugini, F. ;
Paolucci, F. ;
Meloni, G. ;
Berrettini, G. ;
Secondini, M. ;
Fresi, F. ;
Sambo, N. ;
Poti, L. ;
Castoldi, P. .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (01) :125-133
[4]   Dynamic multidimensional optical networking based on spatial and spectral processing [J].
Cvijetic, Milorad ;
Djordjevic, Ivan B. ;
Cvijetic, Neda .
OPTICS EXPRESS, 2012, 20 (08) :9144-9150
[5]  
Fujii S, 2014, J OPT COMMUN NETW, V6, P1059, DOI [10.1109/JOCN.2014.6985898, 10.1364/JOCN.6.001059]
[6]   Elastic Optical Networking: A New Dawn for the Optical Layer? [J].
Gerstel, Ori ;
Jinno, Masahiko ;
Lord, Andrew ;
Ben Yoo, S. J. .
IEEE COMMUNICATIONS MAGAZINE, 2012, 50 (02) :S12-S20
[7]   Transparent optical packet switching:: The European ACTS KEOPS project approach [J].
Guillemot, C ;
Renaud, M ;
Gambini, P ;
Janz, C ;
Andonovic, I ;
Bauknecht, R ;
Bostica, B ;
Burzio, M ;
Callegati, F ;
Casoni, M ;
Chiaroni, D ;
Clérot, F ;
Danielsen, SL ;
Dorgeuille, F ;
Dupas, A ;
Franzen, A ;
Hansen, PB ;
Hunter, DK ;
Kloch, A ;
Krähenbühl, R ;
Lavigne, B ;
Le Corre, A ;
Raffaelli, C ;
Schilling, M ;
Simon, JC ;
Zucchelli, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1998, 16 (12) :2117-2134
[8]   Core Networks in the Flexgrid Era [J].
Lord, Andrew ;
Wright, Paul ;
Mitra, Abhijit .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (05) :1126-1135
[9]   Dense Space-Division Multiplexed Transmission Systems Using Multi-Core and Multi-Mode Fiber [J].
Mizuno, Takayuki ;
Takara, Hidehiko ;
Sano, Akihide ;
Miyamoto, Yutaka .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (02) :582-592
[10]   Resource Allocation for Space-Division Multiplexing: Optical White Box Versus Optical Black Box Networking [J].
Muhammad, Ajmal ;
Zervas, Georgios ;
Forchheimer, Robert .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (23) :4928-4941