An irreversible local Markov chain that preserves the six vertex model on a torus

被引:6
作者
Borodin, Alexei [1 ,2 ]
Bufetov, Alexey [1 ,3 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Russian Acad Sci, Inst Informat Transmiss Problems, Moscow, Russia
[3] Natl Res Univ, Higher Sch Econ, Int Lab Representat Theory & Math Phys, Moscow, Russia
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2017年 / 53卷 / 01期
关键词
Six vertex model; Markov dynamics; Gibbs measure; GROWTH;
D O I
10.1214/15-AIHP722
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We construct an irreversible local Markov dynamics on configurations of up-right paths on a discrete two-dimensional torus, that preserves the Gibbs measures for the six vertex model. An additional feature of the dynamics is a conjecturally nontrivial drift of the height function.
引用
收藏
页码:451 / 463
页数:13
相关论文
共 16 条
[1]  
[Anonymous], preprint
[2]   LIMIT SHAPES FOR GROWING EXTREME CHARACTERS OF U(∞) [J].
Borodin, Alexei ;
Bufetov, Alexey ;
Olshanski, Grigori .
ANNALS OF APPLIED PROBABILITY, 2015, 25 (04) :2339-2381
[3]   Integrable probability: From representation theory to Macdonald processes [J].
Borodin, Alexei ;
Petrov, Leonid .
PROBABILITY SURVEYS, 2014, 11 :1-58
[4]   Anisotropic Growth of Random Surfaces in 2+1 Dimensions [J].
Borodin, Alexei ;
Ferrari, Patrik L. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 325 (02) :603-684
[5]   Macdonald processes [J].
Borodin, Alexei ;
Corwin, Ivan .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 158 (1-2) :225-400
[6]   Schur dynamics of the Schur processes [J].
Borodin, Alexei .
ADVANCES IN MATHEMATICS, 2011, 228 (04) :2268-2291
[7]   Anisotropic KPZ growth in 2+1 dimensions: fluctuations and covariance structure [J].
Borodin, Alexei ;
Ferrari, Patrik L. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2009,
[8]  
Corwin I., 2015, PREPRINT
[9]   THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS [J].
Corwin, Ivan .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)
[10]  
Ferrari P. L., 2011, OXFORD HDB RANDOM MA