Automatic Breast Cancer Grading of Histopathological Images

被引:58
|
作者
Dalle, Jean-Romain [1 ]
Leow, Wee Kheng [1 ]
Racoceanu, Daniel [2 ]
Tutac, Adina Eunice [3 ]
Putti, Thomas C. [4 ]
机构
[1] Natl Univ Singapore, Dept Comp Sci, Comp 1, Singapore 117590, Singapore
[2] IPAL, CNRS, UMI 2955, Singapore 119613, Singapore
[3] Univ Politecn Timisoara, Dept Engn, Timisoara, Romania
[4] Natl Univ Singapore Hosp, Dept Pathol, Singapore 119074, Singapore
来源
2008 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-8 | 2008年
关键词
D O I
10.1109/IEMBS.2008.4649847
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Breast cancer grading of histopathological images is the standard clinical practice for the diagnosis and prognosis of breast cancer development. In a large hospital, a pathologist typically handles 100 grading cases per day, each consisting of about 2000 image frames. It is, therefore, a very tedious and time-consuming task. This paper proposes a method for automatic computer grading to assist pathologists by providing second opinions and reducing their workload. It combines the three criteria in the Nottingham scoring system using a multi-resolution approach. To our best knowledge, there is no existing work that provide complete grading according to the Nottingham criteria.
引用
收藏
页码:3052 / +
页数:3
相关论文
共 50 条
  • [31] AUTOMATIC IMAGE-PROCESSING AND GRADING FOR BREAST-CANCER
    SEUFERT, R
    QUERBACH, S
    CASPER, F
    KNAPSTEIN, PG
    ARCHIVES OF GYNECOLOGY AND OBSTETRICS, 1993, 254 (1-4) : 1147 - 1149
  • [32] Multi CNN based automatic detection of mitotic nuclei in breast histopathological images
    Shihabuddin, Abdul Rahim
    Beevi, K. Sabeena
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 158
  • [33] Convolutional Neural Network for Automated Histopathological Grading of Breast Cancer on Digital Mammograms
    Hai, Jinjin
    Tan, Hongna
    Zeng, Lei
    Wu, Minghui
    Qiao, Kai
    Xu, Jingbo
    Shi, Dapeng
    Yan, Bin
    TENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2018), 2018, 10806
  • [34] A novel self-learning framework for bladder cancer grading using histopathological images
    Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia
    46022, Spain
    不详
    46026, Spain
    arXiv, 1600,
  • [35] Deep Learning Based Analysis of Histopathological Images of Breast Cancer
    Xie, Juanying
    Liu, Ran
    Luttrell, Joseph
    Zhang, Chaoyang
    FRONTIERS IN GENETICS, 2019, 10
  • [36] A novel self-learning framework for bladder cancer grading using histopathological images
    Garcia, Gabriel
    Esteve, Anna
    Colomer, Adrian
    Ramos, David
    Naranjo, Valery
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
  • [37] Breast Cancer Histopathological Images Segmentation Using Deep Learning
    Drioua, Wafaa Rajaa
    Benamrane, Nacera
    Sais, Lakhdar
    SENSORS, 2023, 23 (17)
  • [38] Characterization of Nuclear Pleomorphism and Tubules in Histopathological Images of Breast Cancer
    Peregrina-Barreto, Hayde
    Ramirez-Guatemala, Valeria Y.
    Lopez-Armas, Gabriela C.
    Cruz-Ramos, Jose A.
    SENSORS, 2022, 22 (15)
  • [39] Classification of Breast Cancer Histopathological Images Using KAZE Features
    Sanchez-Morillo, Daniel
    Gonzalez, Jesus
    Garcia-Rojo, Marcial
    Ortega, Julio
    BIOINFORMATICS AND BIOMEDICAL ENGINEERING (IWBBIO 2018), PT II, 2019, 10814 : 276 - 286
  • [40] Computer-Aided Classification of Breast Cancer Histopathological Images
    Aksebzeci, Bekir Hakan
    Kayaalti, Omer
    2017 MEDICAL TECHNOLOGIES NATIONAL CONGRESS (TIPTEKNO), 2017,