Linear maps preserving separability of pure states

被引:17
作者
Hou, Jinchuan [1 ]
Qi, Xiaofei [2 ]
机构
[1] Taiyuan Univ Technol, Dept Math, Taiyuan 030024, Peoples R China
[2] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
基金
中国国家自然科学基金;
关键词
Linear maps; Affine maps; Quantum states; Separability; Tensor products;
D O I
10.1016/j.laa.2013.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Linear maps preserving pure states of a quantum system of any dimension are characterized. This is then used to establish a structure theorem for linear maps that preserve separable pure states in multipartite systems. As an application, a characterization of separable pure state preserving affine maps is obtained. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:1245 / 1257
页数:13
相关论文
共 7 条
  • [1] Bengtsson I., 2017, GEOMETRY QUANTUM STA, DOI DOI 10.1017/9781139207010
  • [2] Chuang I. N., 2000, Quantum Computation and Quantum Information
  • [3] The automorphism group of separable states in quantum information theory
    Friedland, Shmuel
    Li, Chi-Kwong
    Poon, Yiu-Tung
    Sze, Nung-Sing
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)
  • [4] Separability of mixed states: Necessary and sufficient conditions
    Horodecki, M
    Horodecki, P
    Horodecki, R
    [J]. PHYSICS LETTERS A, 1996, 223 (1-2) : 1 - 8
  • [5] Quantum entanglement
    Horodecki, Ryszard
    Horodecki, Pawel
    Horodecki, Michal
    Horodecki, Karol
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (02) : 865 - 942
  • [6] Additive mappings between Hermitian matrix spaces preserving rank not exceeding one
    Lim, MH
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 408 : 259 - 267
  • [7] QUANTUM STATES WITH EINSTEIN-PODOLSKY-ROSEN CORRELATIONS ADMITTING A HIDDEN-VARIABLE MODEL
    WERNER, RF
    [J]. PHYSICAL REVIEW A, 1989, 40 (08): : 4277 - 4281