Modal gain characteristics of GRIN-InGaAlAs/InP lasing nano-heterostructures

被引:14
作者
Alvi, P. A. [1 ]
Lal, Pyare [1 ]
Yadav, Rashmi [1 ]
Dixit, Shobhna [2 ]
Dalela, S. [3 ]
机构
[1] Banasthali Univ, Sch Phys Sci, Dept Phys, Banasthali 304022, Rajasthan, India
[2] Pranveer Singh Inst Technol, Dept Phys, Kanpur, Uttar Pradesh, India
[3] Univ Kota, Dept Pure & Appl Phys, Kota, Rajasthan, India
关键词
InGaAlAs/InP; GRIN heterostructures; Modal gain; Anti-guiding factor; QUANTUM-WELL INGAASP; ALGAINAS; INP; LASERS; RECOMBINATION; PERFORMANCE; DEPENDENCE; OPERATION; PROGRESS; DESIGN;
D O I
10.1016/j.spmi.2013.05.019
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
The paper deals with theoretical investigations of lasing characteristics of GRIN-InGaAlAs/InP nano-heterostructures and specially, the studies have been directed towards the modal gain characteristics within TE and TM polarization modes. The behavior of transparency current density, saturated modal gain and maximum optical loss have also been reported for the SQW and MQWs based lasing nano-heterostructures by studying these parameters for different number of quantum wells. In addition, the temperature and GRIN steps dependent modal gain characteristics along with anti-guiding factor within TE and TM modes have been reported. Since the structure studied in the paper provides maximum gain at the wavelength of 1.55 mu m and 1.33 mu m (wavelengths of minimum attenuation), hence the results reported are very informative for the researchers working in the area of nano-opto-electronics for optical fiber communication systems. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 30 条
[1]   An extensive study on simple and GRIN SCH-based In0.71Ga0.21Al0.08As/InP lasing heterostructures [J].
Alvi, P. A. ;
Lal, Pyare ;
Dalela, S. ;
Siddiqui, M. J. .
PHYSICA SCRIPTA, 2012, 85 (03)
[2]   A MODEL FOR GRIN-SCH-SQW DIODE-LASERS [J].
CHINN, SR ;
ZORY, PS ;
REISINGER, AR .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1988, 24 (11) :2191-2214
[3]   EFFICIENT BAND-STRUCTURE CALCULATIONS OF STRAINED QUANTUM-WELLS [J].
CHUANG, SL .
PHYSICAL REVIEW B, 1991, 43 (12) :9649-9661
[4]   CARRIER TRAPPING IN SINGLE QUANTUM-WELLS WITH DIFFERENT CONFINEMENT STRUCTURES [J].
FELDMANN, J ;
PETER, G ;
GOBEL, EO ;
LEO, K ;
POLLAND, HJ ;
PLOOG, K ;
FUJIWARA, K ;
NAKAYAMA, T .
APPLIED PHYSICS LETTERS, 1987, 51 (04) :226-228
[5]   AUGER RECOMBINATION IN STRAINED AND UNSTRAINED INGAAS/INGAASP MULTIPLE QUANTUM-WELL LASERS [J].
FUCHS, G ;
SCHIEDEL, C ;
HANGLEITER, A ;
HARLE, V ;
SCHOLZ, F .
APPLIED PHYSICS LETTERS, 1993, 62 (04) :396-398
[6]   Small-signal impedance characteristics of quantum-well laser structures [J].
Giudice, GE ;
Kuksenkov, DV ;
Temkin, H .
APPLIED PHYSICS LETTERS, 2001, 78 (26) :4109-4111
[7]   GaInNAs long-wavelength lasers: progress and challenges [J].
Harris, JS .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2002, 17 (08) :880-891
[8]   SOME CHARACTERISTICS OF THE GAAS GAALAS GRADED-INDEX SEPARATE-CONFINEMENT HETEROSTRUCTURE QUANTUM WELL LASER STRUCTURE [J].
HERSEE, SD ;
DECREMOUX, B ;
DUCHEMIN, JP .
APPLIED PHYSICS LETTERS, 1984, 44 (05) :476-478
[9]   Observation of reduced nonradiative current in 1.3-μm AlGaInAs-InP strained MQW lasers [J].
Higashi, T ;
Sweeney, SJ ;
Phillips, AF ;
Adams, AR ;
O'Reilly, EP ;
Uchida, T ;
Fujii, T .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1999, 11 (04) :409-411
[10]   ANALYSIS OF CURRENT INJECTION EFFICIENCY OF SEPARATE-CONFINEMENT-HETEROSTRUCTURE QUANTUM-FILM LASERS [J].
HIRAYAMA, H ;
MIYAKE, Y ;
ASADA, M .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1992, 28 (01) :68-74