Computationally Optimized SARS-CoV-2 MHC Class I and II Vaccine Formulations Predicted to Target Human Haplotype Distributions

被引:30
作者
Liu, Ge [1 ,2 ]
Carter, Brandon [1 ,2 ]
Bricken, Trenton [4 ]
Jain, Siddhartha [1 ]
Viard, Mathias [5 ,6 ]
Carrington, Mary [5 ,6 ]
Gifford, David K. [1 ,2 ,3 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Elect Engn & Comp Sci, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] MIT, Biol Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[4] Duke Univ, Durham, NC USA
[5] Frederick Natl Lab Canc Res, Basic Sci Program, Frederick, MD USA
[6] MIT & Harvard Univ, Massachusetts Gen Hosp, Ragon Inst, Cambridge, MA USA
关键词
T-CELL EPITOPES; BINDING; SELECTION; AFFINITY;
D O I
10.1016/j.cels.2020.06.009
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a combinatorial machine learning method to evaluate and optimize peptide vaccine formulations for SARS-CoV-2. Our approach optimizes the presentation likelihood of a diverse set of vaccine peptides conditioned on a target human-population HLA haplotype distribution and expected epitope drift. Our proposed SARS-CoV-2 MHC class I vaccine formulations provide 93.21% predicted population coverage with at least five vaccine peptide-HLA average hits per person 1 peptide (>= 1 peptide 99.91%) with all vaccine peptides perfectly conserved across 4,690 geographically sampled SARS-CoV-2 genomes. Our proposed MHC class II vaccine formulations provide 97.21 % predicted coverage with at least five vaccine peptide-HLA average hits per person with all peptides having an observed mutation probability of <= 0.001. We provide an open-source implementation of our design methods (OptiVax), vaccine evaluation tool (EvalVax), as well as the data used in our design efforts here: https://github.com/gifford-lab/optivax.
引用
收藏
页码:131 / +
页数:20
相关论文
共 59 条
[1]  
Abdelmageed M.I., 2020, DESIGN MULTIEPITOPE, DOI [10.1101/2020.02.04.934232, DOI 10.1101/2020.02.04.934232]
[2]  
Akhand M.R.N., 2020, GENOME BASED EVOLUTI, DOI [10.1101/2020.04.15.036285, DOI 10.1101/2020.04.15.036285]
[3]  
[Anonymous], 2018, IMMUNOLOGY, DOI DOI 10.1111/IMM.12889
[4]  
[Anonymous], 2020, J MED VIROL, DOI DOI 10.1002/JMV.25736
[5]  
[Anonymous], 2017, J IMMUNOL, DOI DOI 10.4049/JIMMUNOL.1700893
[6]  
[Anonymous], 2015, HUM VACC IMMUNOTHER, DOI DOI 10.1080/21645515.2015.1061159
[7]  
[Anonymous], 2013, J IMMUNOL, DOI DOI 10.4049/JIMMUNOL.1300292
[8]  
[Anonymous], 2017, GLOB CHALL, DOI DOI 10.1002/gch2.1018
[9]  
[Anonymous], 2020, SCIENCE, DOI DOI 10.1126/SCIENCE.ABB3405
[10]  
[Anonymous], 2020, VACCINE, DOI DOI 10.1016/J.VACCINE.2020.04.034