Microscopic theory of phase transitions in a critical region

被引:13
作者
Kocharovsky, Vitaly V. [1 ,2 ]
Kocharovsky, Vladimir V. [2 ,3 ]
机构
[1] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[2] Russian Acad Sci, Inst Appl Phys, Nizhnii Novgorod 603950, Russia
[3] Lobachevsky State Univ Nizhny Novgorod, Nizhnii Novgorod 603950, Russia
关键词
critical phenomena; mesoscopic system; phase transitions; spontaneous symmetry breaking; microscopic theory; Bose-Einstein condensation; ferromagnetism; BOSE-EINSTEIN CONDENSATION; NONPOLYNOMIAL AVERAGES; MODEL; EQUIVALENCE; BEHAVIOR;
D O I
10.1088/0031-8949/90/10/108002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The problem of finding a microscopic theory of phase transitions across a critical point is a central unsolved problem in theoretical physics. We find a general solution to that problem and present it here for the cases of Bose-Einstein condensation (BEC) in an interacting gas and ferromagnetism in a lattice of spins, interacting via a Heisenberg or Ising Hamiltonian. For BEC, we present the exact, valid for the entire critical region, equations for the Green's functions and order parameter, that is a critical-region extension of the Beliaev-Popov and Gross-Pitaevskii equations. For the magnetic phase transition, we find an exact theory in terms of constrained bosons in a lattice and obtain similar equations for the Green's functions and order parameter. In particular, we outline an exact solution for the three-dimensional Ising model.
引用
收藏
页数:23
相关论文
共 78 条
[1]  
Abrikosov AA., 2012, METHODS QUANTUM FIEL
[2]   CONDITIONAL EQUILIBRIUM AND EQUIVALENCE OF MICROCANONICAL AND GRANDCANONICAL ENSEMBLES IN THERMODYNAMIC LIMIT [J].
AIZENMAN, M ;
GOLDSTEIN, S ;
LEBOWITZ, JL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 62 (03) :279-302
[3]   Theory of the weakly interacting Bose gas [J].
Andersen, JO .
REVIEWS OF MODERN PHYSICS, 2004, 76 (02) :599-639
[4]  
Anderson P W, 1984, BASIS NOTIONS CONDEN
[5]  
[Anonymous], 2000, Difference Equations and Inequalities. Theory, Methods and Applications
[6]   Magnetostructural transition, metamagnetism, and magnetic phase coexistence in Co10Ge3O16 [J].
Barton, Phillip T. ;
Seshadri, Ram ;
Llobet, Anna ;
Suchomel, Matthew R. .
PHYSICAL REVIEW B, 2013, 88 (02)
[7]   Non-perturbative renormalization flow in quantum field theory and statistical physics [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2002, 363 (4-6) :223-386
[8]   Integrated Mach-Zehnder interferometer for Bose-Einstein condensates [J].
Berrada, T. ;
van Frank, S. ;
Buecker, R. ;
Schumm, T. ;
Schaff, J. -F. ;
Schmiedmayer, J. .
NATURE COMMUNICATIONS, 2013, 4
[9]  
Binney J. J., 1992, The Theory of Critical Phenomena: An Introduction to the Renormalization Group
[10]  
Bogoliubov N.N., 1967, Lectures on Quantum Statistics, V1