Some Solutions of Generalised Variable Coefficients KdV Equation by Classical Lie Approach

被引:0
|
作者
Kumar, Rajeev [1 ]
Bansal, Anupma [2 ]
Gupta, R. K. [3 ]
机构
[1] Maharishi Markandeshwar Univ, Dept Math, Ambala 133001, Haryana, India
[2] DAV Coll Women, Dept Math, Ferozepur Cantt 152001, Punjab, India
[3] Thapar Univ, Sch Math & Comp Applicat, Patiala 147004, Punjab, India
来源
APPLIED ANALYSIS IN BIOLOGICAL AND PHYSICAL SCIENCES | 2016年 / 186卷
关键词
Exact solution; Symmetry analysis; KdV equation; BACKLUND TRANSFORMATION; WAVE SOLUTIONS; SYMMETRIES;
D O I
10.1007/978-81-322-3640-5_19
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the symmetries of the generalised KdV Equation by using the theory of Lie classical method. The similarities obtained are utilized to reduce the order of nonlinear partial differential equation. Some solutions of reduced differential equation are presented.
引用
收藏
页码:309 / 319
页数:11
相关论文
共 50 条
  • [1] Some exact solutions of KdV equation with variable coefficients
    Latif, M. S. Abdel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1783 - 1786
  • [2] Exact solutions of a KdV equation hierarchy with variable coefficients
    Zhang, Sheng
    Xu, Bo
    Zhang, Hong-Qing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (07) : 1601 - 1616
  • [4] Exact Solutions for Generalized KdV Equation with Variable Coefficients
    Wang Jinzhi
    Chen Wanji
    Xiao Shengzhong
    Mei Jianqin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (06): : 713 - 722
  • [5] Modified Boussinesq system with variable coefficients: classical lie approach and exact solutions
    Gupta, R. K.
    Singh, K.
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2009, 22 (02): : 97 - 110
  • [6] On classical solutions of the KdV equation
    Grudsky, Sergei
    Rybkin, Alexei
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2020, 121 (02) : 354 - 371
  • [7] Exact solutions of the combined KdV-Burgers equation with variable coefficients
    Yu, Yaodong
    Ma, Hong-Cai
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (10) : 3534 - 3540
  • [8] Exact Solutions for a Generalized KdV-MKdV Equation with Variable Coefficients
    Tang, Bo
    Wang, Xuemin
    Fan, Yingzhe
    Qu, Junfeng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [9] New exact analytical solutions for the general KdV equation with variable coefficients
    Lu, Dian-Chen, 1600, Association for Scientific Research, P.O. Box 83, Manisa, 45040, Turkey (19):
  • [10] Lie symmetry analysis, soliton and numerical solutions of boundary value problem for variable coefficients coupled KdV–Burgers equation
    Vikas Kumar
    Aisha Alqahtani
    Nonlinear Dynamics, 2017, 90 : 2903 - 2915