POSITIVE PERIODIC SOLUTIONS OF NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS WITH A PARAMETER AND IMPULSE

被引:0
作者
Fan, Xuanlong [1 ]
Li, Yongkun [1 ]
机构
[1] Yunnan Univ, Dept Math, Kunming 650091, Yunnan, Peoples R China
关键词
Periodic solution; functional differential equation; fixed point; cone;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider first-order neutral differential equations with a parameter and impulse in the form of d/dt[x(t) - cx(t - gamma)] = -a(t)g(x(h(1)(t)))x(t) + lambda b(t)f(x(h(2)(t))), t not equal t(j); Delta[x(t) - cx(t - gamma)] - I-j (x(t)), t - t(j), j is an element of Z(+). Leggett-Williams fixed point theorem, we prove the existence of three positive periodic solutions.
引用
收藏
页数:8
相关论文
共 21 条
[1]   Periodic solutions of first order functional differential equations with periodic deviations [J].
Bai, Dingyong ;
Xu, Yuantong .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 53 (09) :1361-1366
[2]   Positive periodic solutions in delayed Gause-type predator-prey systems [J].
Ding, Xiaoquan ;
Jiang, Jifa .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (02) :1220-1230
[3]   State-dependent impulsive delay-differential equations [J].
Dubeau, F ;
Karrakchou, J .
APPLIED MATHEMATICS LETTERS, 2002, 15 (03) :333-338
[4]  
Kuang Y., 1993, DELAY DIFFERENTIAL E
[5]   MULTIPLE POSITIVE FIXED-POINTS OF NON-LINEAR OPERATORS ON ORDERED BANACH-SPACES [J].
LEGGETT, RW ;
WILLIAMS, LR .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (04) :673-688
[6]   Existence and global attractivity of positive periodic solutions of functional differential equations with impulses [J].
Li, WT ;
Huo, HF .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 59 (06) :857-877
[7]   Existence and multiplicity of positive periodic solutions to functional differential equations with impulse effects [J].
Li, XY ;
Lin, XN ;
Jiang, DQ ;
Zhang, XY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (04) :683-701
[8]   Periodic solutions of periodic delay Lotka-Volterra equations and systems [J].
Li, YK ;
Kuang, Y .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 255 (01) :260-280
[9]  
Li YK, 1999, P AM MATH SOC, V127, P1331
[10]   Positive periodic solutions of nonlinear functional difference equations depending on a parameter [J].
Li, YK ;
Zhu, LF ;
Liu, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2004, 48 (10-11) :1453-1459