Discrete Takagi-Sugeno's fuzzy models: Reduction of the number of LMI in fuzzy control techniques

被引:19
作者
Delmotte, Francois [1 ]
Guerra, Thierry Marie [1 ]
Kruszewski, Alexandre [2 ]
机构
[1] Univ Valenciennes & Hainaut Cambresis, Lab Automat Mecan & Informat Ind & Humaines, CNRS, Unite Mixte Rech 8530, F-59313 Le Mt Houy, Valenciennes, France
[2] Ecole Cent Lille, Lab Automat Genie Informat & Signal, CNRS, Unite Mixte Rech 8146, F-59651 Villeneuve Dascq, France
来源
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS | 2008年 / 38卷 / 05期
关键词
fuzzy models; linear matrix inequalities (LMIs); Lyapunov approach; nonlinear control; robust control;
D O I
10.1109/TSMCB.2008.927263
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Conditions about the stabilization of Takagi-Sugeno fuzzy models can systematically be derived and solved usually using linear matrix inequality problems. Current research tries to lower any pessimism. However, often it leads to an important increase in the number of decision variables, and problems become unsolvable. In this correspondence, we choose to reduce the number of decision variables while not raising the conservatism in comparison with previous results. This correspondence deals with the discrete case, which is harder to solve. We supply results about the stabilization, the regulator problem, and also H-infinity control.
引用
收藏
页码:1423 / 1427
页数:5
相关论文
共 21 条
[1]   A fuzzy controller with evolving structure [J].
Angelov, P .
INFORMATION SCIENCES, 2004, 161 (1-2) :21-35
[2]   An approach to Online identification of Takagi-Suigeno fuzzy models [J].
Angelov, PP ;
Filev, DP .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2004, 34 (01) :484-498
[3]  
Boyd S., 1994, LINEAR MATRIX INEQUA, DOI 10.1137/1.9781611970777
[4]   Continuous Takagi-Sugeno's models: Reduction of the number of LMI conditions in various fuzzy control design technics [J].
Delmotte, F. ;
Guerra, T. M. ;
Ksantini, M. .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2007, 15 (03) :426-438
[5]   A new LMI-based approach to relaxed quadratic stabilization of T-S fuzzy control systems [J].
Fang, Chun-Hsiung ;
Liu, Yung-Sheng ;
Kau, Shih-Wei ;
Hong, Lin ;
Lee, Ching-Hsiang .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2006, 14 (03) :386-397
[6]   LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno's form [J].
Guerra, TM ;
Vermeiren, L .
AUTOMATICA, 2004, 40 (05) :823-829
[7]   Design of strictly positive real systems using constant output feedback [J].
Huang, CH ;
Ioannou, PA ;
Maroulas, J ;
Safonov, MG .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (03) :569-573
[8]   New approaches to relaxed quadratic stability condition of fuzzy control systems [J].
Kim, E ;
Lee, H .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2000, 8 (05) :523-534
[9]   Nonquadratic stabilization conditions for a class of uncertain nonlinear discrete time TS fuzzy models: A new approach [J].
Kruszewski, A. ;
Wang, R. ;
Guerra, T. M. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (02) :606-611
[10]  
KRUSZEWSKI A, 2007, P AFNC VAL FRANC OCT