A NEW FINITE ELEMENT TECHNIQUE FOR A PHASE FIELD MODEL OF BRITTLE FRACTURE

被引:0
作者
Kuhn, Charlotte [1 ]
Mueller, Ralf [1 ]
机构
[1] Univ Kaiserslautern, Inst Appl Mech, D-67663 Kaiserslautern, Germany
关键词
phase field; fracture; finite elements; exponential shape functions; IMPLEMENTATION; FORMULATION;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Phase field models for fracture employ a continuous field variable to indicate cracks. The width of the transition zone between cracked and uncracked areas is controlled by a regularization parameter. The numerical implementation of such models is sensible to the choice of this parameter in conjunction with the mesh size, as the mesh has to be fine enough to resolve high gradients of the crack field appearing in the transition zones. This is the main computational limit and challenge of the implementation. To overcome this limitation, a finite element method using exponential shape functions is introduced. Numerical examples show that these new shape functions perform better than standard Lagrange shape functions.
引用
收藏
页码:1115 / 1133
页数:19
相关论文
共 50 条
[21]   Adaptive phase-field modeling of brittle fracture using the scaled boundary finite element method [J].
Hirshikesh ;
Pramod, A. L. N. ;
Annabattula, R. K. ;
Ooi, E. T. ;
Song, C. ;
Natarajan, S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2019, 355 :284-307
[22]   A phase-field approach to model fracture of arterial walls: Theory and finite element analysis [J].
Gueltekin, Osman ;
Dal, Husnu ;
Holzapfel, Gerhard A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 :542-566
[23]   A phase field model of crack propagation in anisotropic brittle materials with fracture [J].
Zhang, Shuaifang ;
Kim, Dong-Uk ;
Jiang, Wen ;
Tonk, Michael R. .
COMPUTATIONAL MATERIALS SCIENCE, 2021, 193
[24]   Comparison of a phase-field model and of a thick level set model for brittle and quasi-brittle fracture [J].
Cazes, Fabien ;
Moes, Nicolas .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 103 (02) :114-143
[25]   A combined finite element-finite volume framework for phase-field fracture [J].
Sargado, Juan Michael ;
Keilegavlen, Eirik ;
Berre, Inga ;
Nordbotten, Jan Martin .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
[26]   Phase field approximation of dynamic brittle fracture [J].
Schlueter, Alexander ;
Willenbuecher, Adrian ;
Kuhn, Charlotte ;
Mueller, Ralf .
COMPUTATIONAL MECHANICS, 2014, 54 (05) :1141-1161
[27]   Amicromorphic phase-field model for brittle and quasi-brittle fracture [J].
Bharali, Ritukesh ;
Larsson, Fredrik ;
Jaenicke, Ralf .
COMPUTATIONAL MECHANICS, 2024, 73 (03) :579-598
[28]   Adaptive consistent element-free Galerkin method for phase-field model of brittle fracture [J].
Shao, Yulong ;
Duan, Qinglin ;
Qiu, Shasha .
COMPUTATIONAL MECHANICS, 2019, 64 (03) :741-767
[29]   Phase field model for brittle fracture using threshold strategy [J].
Yu, Yuanfeng ;
Hou, Chi ;
Zhao, Meiying .
THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 125
[30]   Phase-field modeling of brittle fracture using automatically oriented exponential finite elements [J].
P. C. Sidharth ;
B. N. Rao .
International Journal of Fracture, 2023, 242 :169-189