Compressive TDOA Estimation: Cramer-Rao Bound and Incoherent Processing

被引:12
|
作者
Cao, Hui [1 ]
Chan, Y. T. [2 ]
So, Hing Cheung [3 ]
机构
[1] Wuhan Univ Technol, Sch Informat Engn, Wuhan 430070, Peoples R China
[2] Royal Mil Coll Canada, Dept Elect & Comp Engn, Kingston, ON K7K 7B4, Canada
[3] City Univ Hong Kong, Dept Elect Engn, Hong Kong, Peoples R China
关键词
Estimation; Signal to noise ratio; Discrete Fourier transforms; Technological innovation; Compressed sensing; Sensor arrays; Cramer-Rao bound (CRB); incoherent processing; time-difference-of-arrival (TDOA) estimation; TIME-DELAY;
D O I
10.1109/TAES.2020.2966095
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Estimation of time-difference-of-arrival (TDOA) between a signal and its time-shifted version has many applications, mostly in localization. Because compressive sensing (CS) can reduce the sampling rate and data volume, TDOA estimation from CS samples (CS-TDOA) has become a subject of interest. Generally, CS-TDOA has lower estimation accuracy, and the Cramer-Rao bound (CRB) can quantify this degradation. The first part of this correspondence derives the CRB for CS-TDOA estimation, and the second part proposes an incoherent processing scheme for CS-TDOA estimation using partial Fourier coefficients. This results in the reduction of the number of sampling channels needed to acquire those coefficients. Simulation results are given to corroborate the theoretical development.
引用
收藏
页码:3326 / 3331
页数:6
相关论文
共 50 条
  • [1] CRAMER-RAO BOUND FOR RANGE ESTIMATION
    Wang, Yiyin
    Leus, Geert
    van der Veen, Alle-Jan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 3301 - 3304
  • [2] Cramer-Rao Bounds for Compressive Frequency Estimation
    Chen, Xushan
    Zhang, Xiongwei
    Yang, Jibin
    Sun, Meng
    Yang, Weiwei
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2015, E98A (03): : 874 - 877
  • [3] CRAMER-RAO BOUND OF TDOA ESTIMATION FOR FREQUENCY-HOPPING SIGNALS IN FADING CHANNELS
    Ouyang Xinxin
    Wan Qun
    Xiong Jinyu
    Wen Fei
    2015 IEEE CHINA SUMMIT & INTERNATIONAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING, 2015, : 1032 - 1036
  • [4] On the Cramer-Rao Bound of Autoregressive Estimation in Noise
    Weruaga, Luis
    Melko, O. Michael
    2011 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2011, : 373 - 376
  • [5] On the generalized Cramer-Rao bound for the estimation of the location
    Batalama, SN
    Kazakos, D
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (02) : 487 - 492
  • [6] DOPPLER FREQUENCY ESTIMATION AND THE CRAMER-RAO BOUND
    BAMLER, R
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 1991, 29 (03): : 385 - 390
  • [7] Cramer-Rao bound for joint estimation problems
    Ijyas, V. P. Thafasal
    Sameer, S. M.
    ELECTRONICS LETTERS, 2013, 49 (06) : 427 - 428
  • [8] Asymptotic Achievability of the Cramer-Rao Bound for Noisy Compressive Sampling
    Babadi, Behtash
    Kalouptsidis, Nicholas
    Tarokh, Vahid
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (03) : 1233 - 1236
  • [9] Cramer-Rao bound for bearing estimation with bias correction
    Xu, Wen
    2007 OCEANS, VOLS 1-5, 2007, : 1894 - 1898
  • [10] The Cramer-Rao bound for the estimation of noisy phase signals
    Zoubir, AM
    Taleb, A
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 3101 - 3104