Long Short-Term Memory Neural Networks for Identifying Type 1 Diabetes Patients with Functional Magnetic Resonance Imaging

被引:0
|
作者
Saiffe Farias, Adolfo Flores [1 ]
Mendizabal, Adriana [2 ]
Gonzalez-Garrido, Andres A. [3 ]
Romo-Vazquez, Rebeca [1 ]
Morales, Alejandro [1 ]
机构
[1] Univ Guadalajara, Dept Comp Sci, Guadalajara, Jalisco, Mexico
[2] Univ Guadalajara, Pharmacobiol Dept, Guadalajara, Jalisco, Mexico
[3] Univ Guadalajara, Neurosci Inst, Guadalajara, Jalisco, Mexico
来源
2018 IEEE LATIN AMERICAN CONFERENCE ON COMPUTATIONAL INTELLIGENCE (LA-CCI) | 2018年
关键词
Neural Network; Long Short-Term Memory; Type; 1; diabetes; Functional Magnetic Resonance Imaging; SEGMENTATION; REGISTRATION; ROBUST;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The neuronal activation in the human brain is one of the most complex systems known nowadays that can be measured through functional magnetic resonance imaging (fMRI). Modeling this phenomenon could help in better understanding diseases with an impact on brain. Type 1 diabetes is a disease associated with the metabolism of energy, that has been associated to cognitive disorders. Here, we propose to classify Type 1 diabetic fMRIs during a working memory test using Long ShortTerm Memory (LSTM) recurrent artificial neural networks due to its ability to model complex time series. We compared 20 different LSTM architectures on our database using mean and standard deviations of accuracy, specificity and F1 score. Our best result was obtained with a bidirectional LSTM obtaining a mean accuracy of 0.87, mean specificity of 0.89 and mean F1 score of 0.86. Our results have paved the way for doing similar models for other diseases and larger databases.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Arabic Word Segmentation With Long Short-Term Memory Neural Networks and Word Embedding
    Almuhareb, Abdulrahman
    Alsanie, Waleed
    Al-Thubaity, Abdulmohsen
    IEEE ACCESS, 2019, 7 : 12879 - 12887
  • [22] Session Based Recommendations Using Recurrent Neural Networks - Long Short-Term Memory
    Dobrovolny, Michal
    Selamat, Ali
    Krejcar, Ondrej
    INTELLIGENT INFORMATION AND DATABASE SYSTEMS, ACIIDS 2021, 2021, 12672 : 53 - 65
  • [23] Handwriting Recognition with Large Multidimensional Long Short-Term Memory Recurrent Neural Networks
    Voigtlaender, Paul
    Doetsch, Patrick
    Ney, Hermann
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 228 - 233
  • [24] LATE REVERBERATION SUPPRESSION USING RECURRENT NEURAL NETWORKS WITH LONG SHORT-TERM MEMORY
    Zhao, Yan
    Wang, DeLiang
    Xu, Buye
    Zhang, Tao
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5434 - 5438
  • [25] Industrial Financial Forecasting using Long Short-Term Memory Recurrent Neural Networks
    Ali, Muhammad Mohsin
    Babar, Muhammad Imran
    Hamza, Muhammad
    Jehanzeb, Muhammad
    Habib, Saad
    Khan, Muhammad Sajid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2019, 10 (04) : 88 - 99
  • [26] Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks
    Bontemps, Loic
    Van Loi Cao
    McDermott, James
    Nhien-An Le-Khac
    FUTURE DATA AND SECURITY ENGINEERING, FDSE 2016, 2016, 10018 : 141 - 152
  • [27] Long Short-term Memory based on a Reward/punishment Strategy for Recurrent Neural Networks
    Liu, Jiangjiang
    Luo, Biao
    Yan, Pengfei
    Wang, Ding
    Liu, Derong
    2017 32ND YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION (YAC), 2017, : 327 - 332
  • [28] Intrusion Detection Using Multilayer Perceptron and Neural Networks with Long Short-Term Memory
    Borisenko, B. B.
    Erokhin, S. D.
    Fadeev, A. S.
    Martishin, I. D.
    2021 SYSTEMS OF SIGNAL SYNCHRONIZATION, GENERATING AND PROCESSING IN TELECOMMUNICATIONS (SYNCHROINFO), 2021,
  • [29] Modelling energy demand response using long short-term memory neural networks
    Mesa Jimenez, Jose Joaquin
    Stokes, Lee
    Moss, Chris
    Yang, Qingping
    Livina, Valerie N.
    ENERGY EFFICIENCY, 2020, 13 (06) : 1263 - 1280
  • [30] Sequence Discriminative Distributed Training of Long Short-Term Memory Recurrent Neural Networks
    Sak, Hasim
    Vinyals, Oriol
    Heigold, Georg
    Senior, Andrew
    McDermott, Erik
    Monga, Rajat
    Mao, Mark
    15TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2014), VOLS 1-4, 2014, : 1209 - 1213