On a Bound in Extremal Combinatorics

被引:11
作者
Raigorodskii, A. M. [1 ,2 ,3 ]
Sagdeev, A. A. [1 ,2 ]
机构
[1] State Univ, Moscow Inst Phys & Technol, Dolgoprudnyi 141700, Moscow Oblast, Russia
[2] Moscow MV Lomonosov State Univ, Mech & Math Fac, Moscow 119991, Russia
[3] Buryat State Univ, Inst Math & Comp Sci, Ulan Ude 670000, Buryat Republic, Russia
基金
俄罗斯基础研究基金会;
关键词
FRANKL-RODL THEOREM; CHROMATIC NUMBER; FORBIDDEN INTERSECTIONS; GEOMETRIC CONSEQUENCES; SPACE; HYPERGRAPH; EDGES; IMPROVEMENTS; DISTANCES; GRAPHS;
D O I
10.1134/S1064562418010155
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new statement of a recent theorem of [1, 2] on the maximum number of edges in a hypergraph with forbidden cardinalities of edge intersections is given. This statement is fundamentally simpler than the original one, which makes it possible to obtain important corollaries in combinatorial geometry and Ramsey theory.
引用
收藏
页码:47 / 48
页数:2
相关论文
共 15 条
[1]   Asymptotic study of the maximum number of edges in a uniform hypergraph with one forbidden intersection [J].
Bobu, A. V. ;
Kupriyanov, A. E. ;
Raigorodskii, A. M. .
SBORNIK MATHEMATICS, 2016, 207 (05) :652-677
[2]   On the maximal number of edges in a uniform hypergraph with one forbidden intersection [J].
Bobu, A. V. ;
Kupriyanov, A. E. ;
Raigorodskii, A. M. .
DOKLADY MATHEMATICS, 2015, 92 (01) :401-403
[3]   On the Chromatic Numbers of Low-Dimensional Spaces [J].
Cherkashin, D. D. ;
Raigorodskii, A. M. .
DOKLADY MATHEMATICS, 2017, 95 (01) :5-6
[4]   INTERSECTION-THEOREMS WITH GEOMETRIC CONSEQUENCES [J].
FRANKL, P ;
WILSON, RM .
COMBINATORICA, 1981, 1 (04) :357-368
[5]   On lower bounds for the chromatic number of sphere [J].
Kostina, O. A. ;
Raigorodskii, A. M. .
DOKLADY MATHEMATICS, 2015, 92 (01) :500-502
[6]   On random subgraphs of Kneser and Schrijver graphs [J].
Kupavskii, Andrey .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 141 :8-15
[7]   REALIZATION OF DISTANCES WITHIN SETS IN EUCLIDEAN SPACE [J].
LARMAN, DG ;
ROGERS, CA .
MATHEMATIKA, 1972, 19 (37) :1-&
[8]   New lower bound for the chromatic number of a rational space with one and two forbidden distances [J].
Ponomarenko, E. I. ;
Raigorodskii, A. M. .
MATHEMATICAL NOTES, 2015, 97 (1-2) :249-254
[9]   New estimates in the problem of the number of edges in a hypergraph with forbidden intersections [J].
Ponomarenko, E. I. ;
Raigorodskii, A. M. .
PROBLEMS OF INFORMATION TRANSMISSION, 2013, 49 (04) :384-390
[10]  
Ponomarenko E. I., 2013, ELECT NOTES DISCR MA, V43, P241