An adaptive single-point algorithm for global numerical optimization

被引:5
|
作者
Viveros-Jimenez, Francisco [1 ]
Leon-Borges, Jose A. [2 ]
Cruz-Cortes, Nareli [1 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Comp, Mexico City 07738, DF, Mexico
[2] Univ Politecn Quintana Roo, Cancun 77500, Quintana Roo, Mexico
关键词
Unconstrained problems; Numerical optimization; Hill-climbing; Adaptive behavior; DIFFERENTIAL EVOLUTION;
D O I
10.1016/j.eswa.2013.08.018
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper describes a novel algorithm for numerical optimization, called Simple Adaptive Climbing (SAC). SAC is a simple efficient single-point approach that does not require a careful fine-tunning of its two parameters. SAC algorithm shares many similarities with local optimization heuristics, such as random walk, gradient descent, and hill-climbing. SAC has a restarting mechanism, and a powerful adaptive mutation process that resembles the one used in Differential Evolution. The algorithms SAC is capable of performing global unconstrained optimization efficiently in high dimensional test functions. This paper shows results on 15 well-known unconstrained problems. Test results confirm that SAC is competitive against state-of-the-art approaches such as micro-Particle Swarm Optimization, CMA-ES or Simple Adaptive Differential Evolution. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:877 / 885
页数:9
相关论文
共 50 条
  • [21] An evolutionary membrane algorithm for global numerical optimization problems
    Han, Min
    Liu, Chuang
    Xing, Jun
    INFORMATION SCIENCES, 2014, 276 : 219 - 241
  • [22] An Adaptive Multi-Population Optimization Algorithm for Global Continuous Optimization
    Li, Zhixi
    Tam, Vincent
    Yeung, Lawrence K.
    IEEE ACCESS, 2021, 9 : 19960 - 19989
  • [23] An orthogonal genetic algorithm with quantization for global numerical optimization
    Leung, YW
    Wang, YP
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2001, 5 (01) : 41 - 53
  • [24] A region-based quantum evolutionary algorithm (RQEA) for global numerical optimization
    Lu, Tzyy-Chyang
    Juang, Jyh-Ching
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 239 : 1 - 11
  • [25] An adaptive hydrologic cycle optimization algorithm for numerical optimization and data clustering
    Yan, Xiaohui
    Niu, Ben
    Chai, Yujuan
    Zhang, Zhicong
    Zhang, Liangwei
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 6123 - 6151
  • [26] Fuzzy adaptive teaching-learning-based optimization for global numerical optimization
    Cheng, Min-Yuan
    Prayogo, Doddy
    NEURAL COMPUTING & APPLICATIONS, 2018, 29 (02) : 309 - 327
  • [27] An adaptive differential evolution with combined strategy for global numerical optimization
    Gaoji Sun
    Bai Yang
    Zuqiao Yang
    Geni Xu
    Soft Computing, 2020, 24 : 6277 - 6296
  • [28] An adaptive differential evolution with combined strategy for global numerical optimization
    Sun, Gaoji
    Yang, Bai
    Yang, Zuqiao
    Xu, Geni
    SOFT COMPUTING, 2020, 24 (09) : 6277 - 6296
  • [29] Bacterial Foraging Optimization Algorithm with Particle Swarm Optimization Strategy for Global Numerical Optimization
    Shen, Hai
    Zhu, Yunlong
    Zhou, Xiaoming
    Guo, Haifeng
    Chang, Chunguang
    WORLD SUMMIT ON GENETIC AND EVOLUTIONARY COMPUTATION (GEC 09), 2009, : 497 - 504
  • [30] Enhanced self-adaptive evolutionary algorithm for numerical optimization
    Yu Xue 1
    2. No.723 Institute of China Shipbuilding Industry Corporation
    3. Science and Technology on Electron-optic Control Laboratory
    Journal of Systems Engineering and Electronics, 2012, 23 (06) : 921 - 928