A material combination principle for highly efficient polymer solar cells investigated by mesoscopic phase heterogeneity

被引:10
作者
Yan, Han [1 ,2 ]
Li, Denghua [1 ,2 ]
He, Chang [3 ]
Wei, Zhixiang [1 ]
Yang, Yanlian [1 ]
Li, Yongfang [3 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Chinese Acad Sci, Inst Chem, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
PERFORMANCE; FULLERENE; POLY(3-HEXYLTHIOPHENE); MORPHOLOGY; EVOLUTION; ACCEPTOR; AGGREGATION; DERIVATIVES; NETWORK; FILMS;
D O I
10.1039/c3nr03165a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Organic solar cells have become a promising energy conversion candidate because of their unique advantages. Novel fullerene derivatives, as a common acceptor, can increase power conversion efficiency (PCE) by increasing the open-circuit voltage. As a representative acceptor, Indene-C60 bisadduct (ICBA) can reach high efficiency with poly(3-hexylthiophene) (P3HT). On the other hand, the novel synthesized polymers mainly aimed to broaden the optical absorption range have steadily promoted efficiency to higher than 9%. However, it is challenging to obtain the desired result by simply combining ICBA with other high-efficiency donors. Thus, P3HT or a high-efficiency polymer PBDTTT-C-T (copolymer of thienyl-substituted BDT with substituted TT) is used as donor and PCBM or ICBA as acceptor in this article to clarify the mechanism behind these materials. The optical and photovoltaic properties of the materials are studied for pair-wise combination. Among these four material groups, the highest PCE of 6.2% is obtained for the PBDTTT-C-T/PCBM combination while the lowest PCE of 3.5% is obtained for the PBDTTT-C-T/ICBA combination. The impact of the mesoscopic heterogeneity on the local mesoscopic photoelectric properties is identified by photo-conductive AFM (pc-AFM), and the consistence between the mesoscopic properties and the macroscopic device performances is also observed. Based on these results, an interface combined model is proposed based on the mesoscopic phase heterogeneity. This study provides a new view on the rational selection of photovoltaic materials, where, aside from the traditional energy level and absorption spectrum matching, the matching of mesoscopic heterogeneity must also be considered.
引用
收藏
页码:11649 / 11656
页数:8
相关论文
共 53 条
[1]   Roll-to-Roll Inkjet Printing and Photonic Sintering of Electrodes for ITO Free Polymer Solar Cell Modules and Facile Product Integration [J].
Angmo, Dechan ;
Larsen-Olsen, Thue T. ;
Jorgensen, Mikkel ;
Sondergaard, Roar R. ;
Krebs, Frederik C. .
ADVANCED ENERGY MATERIALS, 2013, 3 (02) :172-175
[2]   Thieno[3,2-b]thiophene-Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices [J].
Bronstein, Hugo ;
Chen, Zhuoying ;
Ashraf, Rap Shahid ;
Zhang, Weimin ;
Du, Junping ;
Durrant, James R. ;
Tuladhar, Pabitra Shakya ;
Song, Kigook ;
Watkins, Scott E. ;
Geerts, Yves ;
Wienk, Martijn M. ;
Janssen, Rene A. J. ;
Anthopoulos, Thomas ;
Sirringhaus, Henning ;
Heeney, Martin ;
McCulloch, Iain .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (10) :3272-3275
[3]   Morphology evolution via self-organization and lateral and vertical diffusion in polymer: fullerene solar cell blends [J].
Campoy-Quiles, Mariano ;
Ferenczi, Toby ;
Agostinelli, Tiziano ;
Etchegoin, Pablo G. ;
Kim, Youngkyoo ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Bradley, Donal D. C. ;
Nelson, Jenny .
NATURE MATERIALS, 2008, 7 (02) :158-164
[4]   Combination of Molecular, Morphological, and Interfacial Engineering to Achieve Highly Efficient and Stable Plastic Solar Cells [J].
Chang, Chih-Yu ;
Cheng, Yen-Ju ;
Hung, Shih-Hsiu ;
Wu, Jhong-Sian ;
Kao, Wei-Shun ;
Lee, Chia-Hao ;
Hsu, Chain-Shu .
ADVANCED MATERIALS, 2012, 24 (04) :549-+
[5]   Hierarchical Nanomorphologies Promote Exciton Dissociation in Polymer/Fullerene Bulk Heterojunction Solar Cells [J].
Chen, Wei ;
Xu, Tao ;
He, Feng ;
Wang, Wei ;
Wang, Cheng ;
Strzalka, Joseph ;
Liu, Yun ;
Wen, Jianguo ;
Miller, Dean J. ;
Chen, Jihua ;
Hong, Kunlun ;
Yu, Luping ;
Darling, Seth B. .
NANO LETTERS, 2011, 11 (09) :3707-3713
[6]   Morphological Stabilization by In Situ Polymerization of Fullerene Derivatives Leading to Efficient, Thermally Stable Organic Photovoltaics [J].
Cheng, Yen-Ju ;
Hsieh, Chao-Hsiang ;
Li, Pei-Jung ;
Hsu, Chain-Shu .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (09) :1723-1732
[7]   Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites [J].
Chirvase, D ;
Parisi, J ;
Hummelen, JC ;
Dyakonov, V .
NANOTECHNOLOGY, 2004, 15 (09) :1317-1323
[8]   Mapping local photocurrents in polymer/fullerene solar cells with photoconductive atomic force microscopy [J].
Coffey, David C. ;
Reid, Obadiah G. ;
Rodovsky, Deanna B. ;
Bartholomew, Glenn P. ;
Ginger, David S. .
NANO LETTERS, 2007, 7 (03) :738-744
[9]   Time-resolved electrostatic force microscopy of polymer solar cells [J].
Coffey, David C. ;
Ginger, David S. .
NATURE MATERIALS, 2006, 5 (09) :735-740
[10]   Interrelation between Crystal Packing and Small-Molecule Organic Solar Cell Performance [J].
Fitzner, Roland ;
Elschner, Chris ;
Weil, Matthias ;
Uhrich, Christian ;
Koerner, Christian ;
Riede, Moritz ;
Leo, Karl ;
Pfeiffer, Martin ;
Reinold, Egon ;
Mena-Osteritz, Elena ;
Baeuerle, Peter .
ADVANCED MATERIALS, 2012, 24 (05) :675-+