A rolling horizon approach for optimal management of microgrids under stochastic uncertainty

被引:41
|
作者
Silvente, Javier [1 ]
Kopanos, Georgios M. [2 ]
Dua, Vivek [1 ]
Papageorgiou, Lazaros G. [1 ]
机构
[1] UCL, Dept Chem Engn, Ctr Proc Syst Engn, Torrington Pl, London WC1E 7JE, England
[2] Cranfield Univ, Sch Water Energy & Environm, Cranfield MK43 0AL, Beds, England
基金
英国工程与自然科学研究理事会;
关键词
Energy planning; Rolling horizon; Stochastic programming; Scheduling; Microgrid; MILP; MODEL-PREDICTIVE CONTROL; SUPPLY-AND-DEMAND; DISTRIBUTED ENERGY-SYSTEMS; UNIT COMMITMENT PROBLEM; OPTIMAL-DESIGN; COMBINED HEAT; OPERATION MANAGEMENT; TIME REPRESENTATION; SMART GRIDS; POWER UNITS;
D O I
10.1016/j.cherd.2017.09.013
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
This work presents a Mixed Integer Linear Programming (MILP) approach based on a combination of a rolling horizon and stochastic programming formulation. The objective of the proposed formulation is the optimal management of the supply and demand of energy and heat in microgrids under uncertainty, in order to minimise the operational cost. Delays in the starting time of energy demands are allowed within a predefined time windows to tackle flexible demand profiles. This approach uses a scenario-based stochastic programming formulation. These scenarios consider uncertainty in the wind speed forecast, the processing time of the energy tasks and the overall heat demand, to take into account all possible scenarios related to the generation and demand of energy and heat. Nevertheless, embracing all external scenarios associated with wind speed prediction makes their consideration computationally intractable. Thus, updating input information (e.g., wind speed forecast) is required to guarantee good quality and practical solutions. Hence, the two-stage stochastic MILP formulation is introduced into a rolling horizon approach that periodically updates input information. (C) 2017 Published by Elsevier B.V. on behalf of Institution of Chemical Engineers.
引用
收藏
页码:293 / 317
页数:25
相关论文
共 50 条
  • [31] Risk aversion based interval stochastic programming approach for agricultural water management under uncertainty
    Q. Q. Li
    Y. P. Li
    G. H. Huang
    C. X. Wang
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 715 - 732
  • [32] A rolling horizon heuristic for the stochastic cargo mix problem
    Christensen, Jonas
    Erera, Alan
    Pacino, Dario
    TRANSPORTATION RESEARCH PART E-LOGISTICS AND TRANSPORTATION REVIEW, 2019, 123 : 200 - 220
  • [33] A rolling horizon approach for material requirement planning under fuzzy lead times
    Diaz-Madronero, Manuel
    Mula, Josefa
    Jimenez, Mariano
    Peidro, David
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2017, 55 (08) : 2197 - 2211
  • [34] Optimal energy management in multi-carrier microgrids: an MILP approach
    Shekari, Tohid
    Gholami, Amin
    Aminifar, Farrokh
    JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, 2019, 7 (04) : 876 - 886
  • [35] Optimal energy management in multi-carrier microgrids:an MILP approach
    Tohid SHEKARI
    Amin GHOLAMI
    Farrokh AMINIFAR
    Journal of Modern Power Systems and Clean Energy, 2019, 7 (04) : 876 - 886
  • [36] A Microgrid Energy Management System Based on the Rolling Horizon Strategy
    Palma-Behnke, Rodrigo
    Benavides, Carlos
    Lanas, Fernando
    Severino, Bernardo
    Reyes, Lorenzo
    Llanos, Jacqueline
    Saez, Doris
    IEEE TRANSACTIONS ON SMART GRID, 2013, 4 (02) : 996 - 1006
  • [37] An Efficient Decision-Making Approach for Optimal Energy Management of Microgrids
    Bazmohammadi, Najmeh
    Karimpour, Ali
    Bazmohammadi, Somayyeh
    Anvari-Moghaddam, Amjad
    Guerrero, Josep M.
    2019 IEEE MILAN POWERTECH, 2019,
  • [38] Dynamic oligopolistic games under uncertainty: A stochastic programming approach
    Genc, Talat S.
    Reynolds, Stanley S.
    Sen, Suvrajeet
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2007, 31 (01) : 55 - 80
  • [39] A stochastic programming approach for operating theatre scheduling under uncertainty
    Bruni, M. E.
    Beraldi, P.
    Conforti, D.
    IMA JOURNAL OF MANAGEMENT MATHEMATICS, 2015, 26 (01) : 99 - 119
  • [40] Rolling-horizon optimal control of sewer networks
    Marinaki, M
    Papageorgiou, M
    PROCEEDINGS OF THE 2001 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS (CCA'01), 2001, : 594 - 599