Semiclassical differential structures

被引:26
作者
Beggs, EJ [1 ]
Majid, S
机构
[1] Univ Coll Swansea, Dept Math, Swansea SA2 8PP, W Glam, Wales
[2] Univ London Queen Mary Coll, Sch Math Sci, London E1 4NS, England
关键词
Poisson geometry; symplectic connection; noncommutative geometry; quantum group; differential calculus; nonassociative algebra;
D O I
10.2140/pjm.2006.224.1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We semiclassicalise the standard notion of differential calculus in noncommutative geometry on algebras and quantum groups. We show in the symplectic case that the infinitesimal data for a differential calculus is a symplectic connection, and interpret its curvature as lowest order nonassociativity of the exterior algebra. Semiclassicalisation of the noncommutative torus provides an example with zero curvature. In the Poisson - Lie group case we study left-covariant infinitesimal data in terms of partially defined preconnections. We show that the moduli space of bicovariant infinitesimal data for quasitriangular Poisson - Lie groups has a canonical reference point which is flat in the triangular case. Using a theorem of Kostant, we completely determine the moduli space when the Lie algebra is simple: the canonical preconnection is the unique point other than in the case of sl(n), n > 2, when the moduli space is 1-dimensional. We relate the canonical preconnection to Drinfeld twists and thereby quantise it to a super coquasi-Hopf exterior algebra. We also discuss links with Fedosov quantisation.
引用
收藏
页码:1 / 44
页数:44
相关论文
共 17 条
[1]  
[Anonymous], 1999, LONDON MATH SOC LECT
[2]  
BEGGS EJ, 2003, MATHQA0306094 U SWAN
[3]   REMARKS ON BICOVARIANT DIFFERENTIAL CALCULI AND EXTERIOR HOPF-ALGEBRAS [J].
BRZEZINSKI, T .
LETTERS IN MATHEMATICAL PHYSICS, 1993, 27 (04) :287-300
[4]  
Connes A., 1994, NONCOMMUTATIVE GEOME
[5]  
Drinfeld V.G., 1990, Leningrad Math. J., V2, P321
[6]  
Drinfeld V. G., 1987, P INT C MATH, V2, P798
[7]  
Fedosov B., 1996, MATH TOPICS, V9
[8]   Fedosov manifolds [J].
Gelfand, I ;
Retakh, V ;
Shubin, M .
ADVANCES IN MATHEMATICS, 1998, 136 (01) :104-140
[9]   Braided Lie algebras and bicovdriant differential calculi over co-quasitriangular Hopf algebras [J].
Gomez, X ;
Majid, S .
JOURNAL OF ALGEBRA, 2003, 261 (02) :334-388
[10]   Noncommutative rigidity [J].
Hawkins, E .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 246 (02) :211-235