CLASSIFICATION OF ORBIT CLOSURES IN THE VARIETY OF THREE-DIMENSIONAL NOVIKOV ALGEBRAS

被引:30
作者
Benes, Thomas [1 ]
Burde, Dietrich [1 ]
机构
[1] Univ Vienna, Fak Math, A-1090 Vienna, Austria
基金
奥地利科学基金会;
关键词
Orbit closure; varieties; Novikov algebras; LIE-ALGEBRAS;
D O I
10.1142/S0219498813500813
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We classify the orbit closures in the variety Nov(3) of complex, three-dimensional Novikov algebras and obtain the Hasse diagrams for the closure ordering of the orbits. We provide invariants which are easy to compute and which enable us to decide whether or not one Novikov algebra degenerates to another Novikov algebra.
引用
收藏
页数:33
相关论文
共 18 条
[1]   The classification of Novikov algebras in low dimensions [J].
Bai, CM ;
Meng, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (08) :1581-1594
[2]  
Balinsky A., 1985, Sov. Math. Dokl, V32, P228
[3]  
Benes T., 2011, THESIS U WIEN
[4]   Degenerations of pre-Lie algebras [J].
Benes, Thomas ;
Burde, Dietrich .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
[5]  
BOREL A, 1991, GRADUATE TEXTS MATH, V126
[6]   Classification of orbit closures of 4-dimensional complex Lie algebras [J].
Burde, D ;
Steinhoff, C .
JOURNAL OF ALGEBRA, 1999, 214 (02) :729-739
[7]  
Burde D., 2006, Cent. Eur. J. Math., V4, P323
[8]   Novikov structures on solvable Lie algebras [J].
Burde, Dietrich ;
Dekimpe, Karel .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (09) :1837-1855
[9]   Classification of Novikov algebras [J].
Burde, Dietrich ;
de Graaf, Willem .
APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2013, 24 (01) :1-15
[10]   Hopf algebras, renormalization and noncommutative geometry [J].
Connes, A ;
Kreimer, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 199 (01) :203-242