Thickness dependent device characteristics of sandwich polymer light-emitting electrochemical cell

被引:32
|
作者
Li, Xiaoyu [1 ]
Gao, Jun [2 ]
Liu, Guojun [1 ]
机构
[1] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Polymer light-emitting electrochemical cell; Lifetime; Active layer thickness; Electrochemical doping; JUNCTION FORMATION; N-JUNCTION; LIFETIME; ELECTROLUMINESCENCE; PERFORMANCE; EFFICIENCY; DIODES; ELECTROLYTE; DEGRADATION; MODEL;
D O I
10.1016/j.orgel.2013.03.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The polymer light-emitting electrochemical cell (LEC) is an attractive alternative to the widely studied polymer light-emitting diodes (PLEDs) for possible lighting and display applications. The main advantage of an LEC is its relative insensitivity to electrode work function and active layer thickness. While this is true when compared to a PLED, we show that active layer thickness can strongly influence several key LEC performance parameters. Sandwich LECs exhibit vastly different device characteristics when the active layer thickness is varied from approximately 75 nm to 1206 nm. Maximum luminance, current efficiency (in cd/A) and operating lifetime are all strongly thickness dependent. The 75 nm LEC shows artificially slow turn on due to the presence of micro-shorts. The 1206 nm LEC exhibits a peculiar partial recovery of luminance after prolonged operation. We attribute the thickness dependent LEC characteristics to variations in doping levels. Our results suggest that the active layer thickness of sandwich LECs is a non-trivial parameter that should be carefully optimized and studied. Crown Copyright (C) 2013 Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:1441 / 1446
页数:6
相关论文
共 50 条
  • [21] Optical patterning of polymer light-emitting device
    Tada, K
    Onoda, M
    Nakayama, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1998, 37 (10A): : L1181 - L1183
  • [22] Optically patternable polymer light-emitting device
    Tada, K
    Onoda, M
    Nakayama, H
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS, 1999, 38 (7B): : L833 - L835
  • [23] Cost, energy and emissions assessment of organic polymer light-emitting device architectures
    Carter, Catrice M.
    Cho, Justin
    Glanzer, Aaron
    Kamcev, Nikola
    O'Carroll, Deirdre M.
    JOURNAL OF CLEANER PRODUCTION, 2016, 137 : 1418 - 1431
  • [24] Polymer light-emitting electrochemical cells-Recent advances and future trends
    Gao, Jun
    CURRENT OPINION IN ELECTROCHEMISTRY, 2018, 7 : 87 - 94
  • [25] Stability of polymer light-emitting diodes
    Berntsen, AJM
    Van de Weijer, P
    Croonen, Y
    Liedenbaum, CTHF
    Vleggaar, JJM
    PHILIPS JOURNAL OF RESEARCH, 1998, 51 (04) : 511 - 525
  • [26] White Light-Emitting Electrochemical Cell
    Tang, Shi
    Pan, Junyou
    Buchholz, Herwig
    Edman, Ludvig
    ACS APPLIED MATERIALS & INTERFACES, 2011, 3 (09) : 3384 - 3388
  • [27] Dynamic doping and degradation in sandwich-type light-emitting electrochemical cells
    Meier, Sebastian B.
    Hartmann, David
    Tordera, Daniel
    Bolink, Henk J.
    Winnacker, Albrecht
    Sarfert, Wiebke
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (31) : 10886 - 10890
  • [28] Traps for Electrons and Holes Limit the Efficiency and Durability of Polymer Light-Emitting Electrochemical Cells
    Diethelm, Matthias
    Devizis, Andrius
    Hu, Wei-Hsu
    Zhang, Tao
    Furrer, Roman
    Vael, Camilla
    Jenatsch, Sandra
    Nueesch, Frank
    Hany, Roland
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (43)
  • [29] A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell
    Zhang, Zhitao
    Guo, Kunping
    Li, Yiming
    Li, Xueyi
    Guan, Guozhen
    Li, Houpu
    Luo, Yongfeng
    Zhao, Fangyuan
    Zhang, Qi
    Wei, Bin
    Pei, Qibing
    Peng, Huisheng
    NATURE PHOTONICS, 2015, 9 (04) : 233 - 238
  • [30] Device Physics of White Polymer Light-Emitting Diodes
    Nicolai, Herman T.
    Hof, Andre
    Blom, Paul W. M.
    ADVANCED FUNCTIONAL MATERIALS, 2012, 22 (10) : 2040 - 2047