Thickness dependent device characteristics of sandwich polymer light-emitting electrochemical cell

被引:32
|
作者
Li, Xiaoyu [1 ]
Gao, Jun [2 ]
Liu, Guojun [1 ]
机构
[1] Queens Univ, Dept Chem, Kingston, ON K7L 3N6, Canada
[2] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Polymer light-emitting electrochemical cell; Lifetime; Active layer thickness; Electrochemical doping; JUNCTION FORMATION; N-JUNCTION; LIFETIME; ELECTROLUMINESCENCE; PERFORMANCE; EFFICIENCY; DIODES; ELECTROLYTE; DEGRADATION; MODEL;
D O I
10.1016/j.orgel.2013.03.015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The polymer light-emitting electrochemical cell (LEC) is an attractive alternative to the widely studied polymer light-emitting diodes (PLEDs) for possible lighting and display applications. The main advantage of an LEC is its relative insensitivity to electrode work function and active layer thickness. While this is true when compared to a PLED, we show that active layer thickness can strongly influence several key LEC performance parameters. Sandwich LECs exhibit vastly different device characteristics when the active layer thickness is varied from approximately 75 nm to 1206 nm. Maximum luminance, current efficiency (in cd/A) and operating lifetime are all strongly thickness dependent. The 75 nm LEC shows artificially slow turn on due to the presence of micro-shorts. The 1206 nm LEC exhibits a peculiar partial recovery of luminance after prolonged operation. We attribute the thickness dependent LEC characteristics to variations in doping levels. Our results suggest that the active layer thickness of sandwich LECs is a non-trivial parameter that should be carefully optimized and studied. Crown Copyright (C) 2013 Published by Elsevier B. V. All rights reserved.
引用
收藏
页码:1441 / 1446
页数:6
相关论文
共 50 条
  • [11] The role of the polymer solid electrolyte molecular weight in light-emitting electrochemical cells
    Hernandez-Sosa, Gerardo
    Eckstein, Ralph
    Tekoglu, Serpil
    Becker, Tobias
    Mathies, Florian
    Lemmer, Uli
    Mechau, Norman
    ORGANIC ELECTRONICS, 2013, 14 (09) : 2223 - 2227
  • [12] Reversible luminance decay in polymer light-emitting electrochemical cells
    Li, Xiaoyu
    Gao, Jun
    Liu, Guojun
    APPLIED PHYSICS LETTERS, 2013, 102 (22)
  • [13] Separating Ion and Electron Transport: The Bilayer Light-Emitting Electrochemical Cell
    Sandstrom, Andreas
    Matyba, Piotr
    Inganas, Olle
    Edman, Ludvig
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (19) : 6646 - +
  • [14] Stress Testing Polymer Light-Emitting Electrochemical Cells: Suppression of Voltage Drift and Black Spot Formation
    Hu, Shiyu
    Gao, Jun
    ADVANCED MATERIALS TECHNOLOGIES, 2018, 3 (11):
  • [15] Long-term testing of polymer light-emitting electrochemical cells: Reversible doping and black spots
    AlTal, Faleh
    Gao, Jun
    ORGANIC ELECTRONICS, 2015, 18 : 1 - 7
  • [16] Bringing light to solid-state electrolytes: The polymer light-emitting electrochemical cell
    Edman, L
    ELECTROCHIMICA ACTA, 2005, 50 (19) : 3878 - 3885
  • [17] Modeling of Electrical Characteristics of Degraded Polymer Light-Emitting Diodes
    Niu, Quan
    Wetzelaer, Gert-Jan A. H.
    Blom, Paul W. M.
    Craciun, Nicoleta I.
    ADVANCED ELECTRONIC MATERIALS, 2016, 2 (08):
  • [18] Lifetime study of polymer light-emitting electrochemical cells
    Zhang, Yanguang
    Gao, Jun
    JOURNAL OF APPLIED PHYSICS, 2006, 100 (08)
  • [19] Transparent Light-Emitting Electrochemical Cells
    Mardegan, Lorenzo
    Paliwal, Abhyuday
    Zanoni, Kassio P. S.
    Tordera, Daniel
    Bolink, Henk J.
    ADVANCED OPTICAL MATERIALS, 2022, 10 (24)
  • [20] Self-Heating in Light-Emitting Electrochemical Cells
    Rafols-Ribe, Joan
    Robinson, Nathaniel D.
    Larsen, Christian
    Tang, Shi
    Top, Michiel
    Sandstrom, Andreas
    Edman, Ludvig
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (33)