BOUNDS FOR PROJECTIVE CODES FROM SEMIDEFINITE PROGRAMMING

被引:22
作者
Bachoc, Christine [1 ]
Passuello, Alberto [1 ]
Vallentin, Frank [2 ]
机构
[1] Univ Bordeaux, Inst Math, F-33400 Talence, France
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
Projective codes; semidefinite programming; bounds; ERROR-CORRECTING CODES; SPACES; GRAPH;
D O I
10.3934/amc.2013.7.127
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We apply the semidefinite programming method to derive bounds for projective codes over a finite field.
引用
收藏
页码:127 / 145
页数:19
相关论文
共 28 条
[1]   Network information flow [J].
Ahlswede, R ;
Cai, N ;
Li, SYR ;
Yeung, RW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1204-1216
[2]  
[Anonymous], PHILIPS RES REP S
[3]  
[Anonymous], P 2008 IEEE INT S IN
[4]  
Bachoc C, 2007, COE C DEV DYN MATH H, P129
[5]  
Bachoc C, 2010, IEEE INF THEOR WORKS
[6]   New upper bounds for kissing numbers from semidefinite programming [J].
Bachoc, Christine ;
Vallentin, Frank .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :909-924
[7]  
Bachoc C, 2012, INT SER OPER RES MAN, V166, P219, DOI 10.1007/978-1-4614-0769-0_9
[8]   HAHN POLYNOMIALS, DISCRETE HARMONICS, AND T-DESIGNS [J].
DELSARTE, P .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) :157-166
[9]   ADDITION THEOREM FOR SOME Q-HAHN POLYNOMIALS [J].
DUNKL, CF .
MONATSHEFTE FUR MATHEMATIK, 1978, 85 (01) :5-37
[10]   Error-Correcting Codes in Projective Space [J].
Etzion, Tuvi ;
Vardy, Alexander .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) :1165-1173