BOUNDS FOR PROJECTIVE CODES FROM SEMIDEFINITE PROGRAMMING

被引:22
作者
Bachoc, Christine [1 ]
Passuello, Alberto [1 ]
Vallentin, Frank [2 ]
机构
[1] Univ Bordeaux, Inst Math, F-33400 Talence, France
[2] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
Projective codes; semidefinite programming; bounds; ERROR-CORRECTING CODES; SPACES; GRAPH;
D O I
10.3934/amc.2013.7.127
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We apply the semidefinite programming method to derive bounds for projective codes over a finite field.
引用
收藏
页码:127 / 145
页数:19
相关论文
共 28 条
  • [1] Network information flow
    Ahlswede, R
    Cai, N
    Li, SYR
    Yeung, RW
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) : 1204 - 1216
  • [2] [Anonymous], PHILIPS RES REP S
  • [3] [Anonymous], P 2008 IEEE INT S IN
  • [4] Bachoc C, 2007, COE C DEV DYN MATH H, P129
  • [5] Bachoc C, 2010, IEEE INF THEOR WORKS
  • [6] New upper bounds for kissing numbers from semidefinite programming
    Bachoc, Christine
    Vallentin, Frank
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) : 909 - 924
  • [7] Bachoc C, 2012, INT SER OPER RES MAN, V166, P219, DOI 10.1007/978-1-4614-0769-0_9
  • [8] HAHN POLYNOMIALS, DISCRETE HARMONICS, AND T-DESIGNS
    DELSARTE, P
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 34 (01) : 157 - 166
  • [9] ADDITION THEOREM FOR SOME Q-HAHN POLYNOMIALS
    DUNKL, CF
    [J]. MONATSHEFTE FUR MATHEMATIK, 1978, 85 (01): : 5 - 37
  • [10] Error-Correcting Codes in Projective Space
    Etzion, Tuvi
    Vardy, Alexander
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (02) : 1165 - 1173