Codes and caps from orthogonal Grassmannians

被引:11
|
作者
Cardinali, Ilaria [1 ]
Giuzzi, Luca [2 ]
机构
[1] Univ Siena, Dept Informat Engn & Math, I-53100 Siena, Italy
[2] Univ Brescia, DICATAM Sect Math, I-25133 Brescia, Italy
关键词
Polar Grassmannians; Dual polar space; Embedding; Error correcting code; Cap; Hadamard matrix; Sylvester construction; TENSOR PRODUCT CODES; VERONESEAN EMBEDDINGS; POLAR SPACES; VARIETIES;
D O I
10.1016/j.ffa.2013.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we investigate linear error correcting codes and. projective caps related to the Grassmann embedding epsilon(gr)(k) of an orthogonal Grassmannian Delta(k). In particular, we determine some of the parameters of the codes arising from the projective system determined by epsilon(gr)(k)(Delta(k)). We also study special sets of points of Delta(k) which are met by any line of Delta(k) in at most 2 points and we show that their image under the Grassmann embedding epsilon(gr)(k) is a projective cap. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:148 / 169
页数:22
相关论文
共 46 条
  • [21] Thermal Comfort Properties of Wearing Caps from Various Textiles
    Jun, Youngmin
    Park, Chung Hee
    Shim, Huensup
    Kang, Tae Jin
    TEXTILE RESEARCH JOURNAL, 2009, 79 (02) : 179 - 189
  • [22] Orthogonal codes and cross-talk in phase-code multiplexed volume holographic data storage
    Wen, ZQ
    Tao, Y
    OPTICS COMMUNICATIONS, 1998, 148 (1-3) : 11 - 17
  • [23] Generic constructions of PoRs from codes and instantiations
    Lavauzelle, Julien
    Levy-dit-Vehel, Francoise
    JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2019, 13 (02) : 81 - 106
  • [24] Locally recoverable codes from rational maps
    Munuera, Carlos
    Tenorio, Wanderson
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 80 - 100
  • [25] Nonbinary quantum codes derived from finite geometries
    Clark, David
    Tonchev, Vladimir D.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (01) : 63 - 69
  • [26] Error-correcting codes from permutation groups
    Bailey, Robert F.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4253 - 4265
  • [27] LDPC codes from triangle-free line sets
    Mellinger, KE
    DESIGNS CODES AND CRYPTOGRAPHY, 2004, 32 (1-3) : 341 - 350
  • [28] LOCALLY RECOVERABLE CODES FROM ALGEBRAIC CURVES WITH SEPARATED VARIABLES
    Munuera, Carlos
    Tenorio, Wanderson
    Torres, Fernando
    ADVANCES IN MATHEMATICS OF COMMUNICATIONS, 2020, 14 (02) : 265 - 278
  • [29] LDPC Codes from Triangle-Free Line Sets
    Keith E. Mellinger
    Designs, Codes and Cryptography, 2004, 32 : 341 - 350
  • [30] ERROR-CORRECTING CODES FROM k-RESOLVING SETS
    Bailey, Robert F.
    Yero, Ismael G.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2019, 39 (02) : 341 - 355