Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure

被引:148
|
作者
Bansode, Atul [1 ]
Tidona, Bruno [2 ]
von Rohr, Philipp Rudolf [2 ]
Urakawa, Atsushi [1 ]
机构
[1] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain
[2] ETH, Inst Proc Engn, CH-8092 Zurich, Switzerland
关键词
GAS SHIFT REACTION; METHANOL SYNTHESIS; CARBON-DIOXIDE; METHYL FORMATE; NITROUS-OXIDE; FORMIC-ACID; CU-ZNO; MECHANISM; DECOMPOSITION; SPECTROSCOPY;
D O I
10.1039/c2cy20604h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation over K and Ba promoted Cu/Al2O3 catalyst was systematically investigated to study the promoter effects in a wide range of pressure conditions. The catalysts prepared by the impregnation method were characterized by XRD, physisorption, N2O-pulse chemisorption, H-2-TPR, and CO2-TPD techniques. The catalytic performance was evaluated using a fixed-bed microreactor for a pressure and temperature range of 0.40-36 MPa and 443-553 K. The influence of promoters on the formation of surface species present during the reaction was examined by in situ DRIFTS. As expected from thermodynamics, high pressure and low temperature are the favourable conditions to achieve high selectivity to methanol over the Cu/Al2O3 catalyst. Improved reaction performance towards methanol synthesis and reverse water-gas shift (RWGS) reaction was observed for the Ba and K promoted Cu/Al2O3 catalysts, respectively. Notably, with the Ba promotion the selectivity to methanol was enhanced to 62.2% compared to 46.6% of the unpromoted Cu/Al2O3 catalyst at 10 MPa and 473 K at the expense of a lowered CO2 conversion. In contrast, the K promoted catalyst exhibited high selectivity to CO (95.8%) under the same reaction conditions. Formation of dimethyl ether, significant over the unpromoted Cu/Al2O3 catalyst at 0.4-10 MPa, was strongly suppressed at 36 MPa. Ba and K promoters effectively suppressed the formation of dimethyl ether under all examined pressure conditions by weakening the acidity of the alumina support. The strong promotional effects of K was explained by the predominant coverage of both Cu and alumina surface sites, creating specific active sites stabilizing surface intermediate species and preferring the RWGS pathway. On the contrary, the Ba promoter covers the alumina surface exclusively and renders Cu accessible and more easily reducible, promoting methanol synthesis. The effects of promoters on the catalytic performance were found to be valid at low and at elevated pressures.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 50 条
  • [41] Cu/ZnO/Al2O3 Catalyst Promoted with Amorphous MgO for Enhanced CO2 Hydrogenation to Methanol
    Chen, Hecao
    Xie, Shangzhi
    Jiang, Zhaocong
    Xu, Jing
    Zhu, Minghui
    CHEMCATCHEM, 2025,
  • [42] The Effect of Cu/Zn Molar Ratio on CO2 Hydrogenation over Cu/ZnO/ZrO2/Al2O3 Catalyst
    Shaharun, Salina
    Shaharun, Maizatul S.
    Mohamad, Dasmawati
    Taha, Mohd F.
    3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): INNOVATIVE RESEARCH IN APPLIED SCIENCES FOR A SUSTAINABLE FUTURE, 2014, 1621 : 3 - 9
  • [43] In situ FTIR and ex situ XPS/HS-LEIS study of supported Cu/Al2O3 and Cu/ZnO catalysts for CO2 hydrogenation
    Hu, Jun
    Li, Yangyang
    Zhen, Yanping
    Chen, Mingshu
    Wan, Huilin
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (03) : 367 - 375
  • [44] CO2 hydrogenation reaction over pristine Fe, Co, Ni, Cu and Al2O3 supported Ru: Comparison and determination of the activation energies
    Mutschler, Robin
    Moioli, Emanuele
    Luo, Wen
    Gallandat, Noris
    Zuettel, Andreas
    JOURNAL OF CATALYSIS, 2018, 366 : 139 - 149
  • [45] Comparative study on the effect of different copper loading on catalytic behaviors and activity of Cu/ZnO/Al2O3 catalysts toward CO and CO2 hydrogenation
    Kamsuwan, Tanutporn
    Krutpijit, Chadaporn
    Praserthdam, Supareak
    Phatanasri, Suphot
    Jongsomjit, Bunjerd
    Praserthdam, Piyasan
    HELIYON, 2021, 7 (07)
  • [46] CO2 Hydrogenation to CH3OH over Cu-Based Catalysts: Primary and Side Reactions
    Zhao, Dan
    Han, Shanlei
    Kondratenko, Evgenii V.
    CHEMCATCHEM, 2023, 15 (20)
  • [47] Effects of Potassium on Ni-K/Al2O3 Catalysts in the Synthesis of Carbon Nanofibers by Catalytic Hydrogenation of CO2
    Chen, Ching S.
    Lin, Jaarn H.
    You, Jiann H.
    Yang, Kuo H.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (11) : 3773 - 3781
  • [48] Interface effects for the hydrogenation of CO2 on Pt4/-γ-Al2O3
    Liu, Yulu
    Liu, Jie
    Feng, Gang
    Yin, Shi
    Cen, Wanglai
    Liu, Yongjun
    APPLIED SURFACE SCIENCE, 2016, 386 : 196 - 201
  • [49] CO2 Hydrogenation to Methanol over La2O3-Promoted CuO/ZnO/Al2O3 Catalysts: A Kinetic and Mechanistic Study
    Kourtelesis, Marios
    Kousi, Kalliopi
    Kondarides, Dimitris, I
    CATALYSTS, 2020, 10 (02)
  • [50] Low-temperature methanol synthesis catalyzed over Cu/γ-Al2O3–TiO2 for CO2 hydrogenation
    Gong-Xin Qi
    Xiao-Ming Zheng
    Jin-Hua Fei
    Zhao-Yin Hou
    Catalysis Letters, 2001, 72 : 191 - 196