Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure

被引:157
作者
Bansode, Atul [1 ]
Tidona, Bruno [2 ]
von Rohr, Philipp Rudolf [2 ]
Urakawa, Atsushi [1 ]
机构
[1] Inst Chem Res Catalonia ICIQ, Tarragona 43007, Spain
[2] ETH, Inst Proc Engn, CH-8092 Zurich, Switzerland
关键词
GAS SHIFT REACTION; METHANOL SYNTHESIS; CARBON-DIOXIDE; METHYL FORMATE; NITROUS-OXIDE; FORMIC-ACID; CU-ZNO; MECHANISM; DECOMPOSITION; SPECTROSCOPY;
D O I
10.1039/c2cy20604h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
CO2 hydrogenation over K and Ba promoted Cu/Al2O3 catalyst was systematically investigated to study the promoter effects in a wide range of pressure conditions. The catalysts prepared by the impregnation method were characterized by XRD, physisorption, N2O-pulse chemisorption, H-2-TPR, and CO2-TPD techniques. The catalytic performance was evaluated using a fixed-bed microreactor for a pressure and temperature range of 0.40-36 MPa and 443-553 K. The influence of promoters on the formation of surface species present during the reaction was examined by in situ DRIFTS. As expected from thermodynamics, high pressure and low temperature are the favourable conditions to achieve high selectivity to methanol over the Cu/Al2O3 catalyst. Improved reaction performance towards methanol synthesis and reverse water-gas shift (RWGS) reaction was observed for the Ba and K promoted Cu/Al2O3 catalysts, respectively. Notably, with the Ba promotion the selectivity to methanol was enhanced to 62.2% compared to 46.6% of the unpromoted Cu/Al2O3 catalyst at 10 MPa and 473 K at the expense of a lowered CO2 conversion. In contrast, the K promoted catalyst exhibited high selectivity to CO (95.8%) under the same reaction conditions. Formation of dimethyl ether, significant over the unpromoted Cu/Al2O3 catalyst at 0.4-10 MPa, was strongly suppressed at 36 MPa. Ba and K promoters effectively suppressed the formation of dimethyl ether under all examined pressure conditions by weakening the acidity of the alumina support. The strong promotional effects of K was explained by the predominant coverage of both Cu and alumina surface sites, creating specific active sites stabilizing surface intermediate species and preferring the RWGS pathway. On the contrary, the Ba promoter covers the alumina surface exclusively and renders Cu accessible and more easily reducible, promoting methanol synthesis. The effects of promoters on the catalytic performance were found to be valid at low and at elevated pressures.
引用
收藏
页码:767 / 778
页数:12
相关论文
共 76 条
[1]   Nitrous Oxide Decomposition Over MCO3-Co3O4 (M = Ca, Sr, Ba) Catalysts [J].
Abu-Zied, B. M. ;
Soliman, S. A. .
CATALYSIS LETTERS, 2009, 132 (3-4) :299-310
[2]   DEHYDROGENATION OF METHANOL TO METHYL FORMATE OVER COPPER-BASED CATALYSTS [J].
AI, M .
APPLIED CATALYSIS, 1984, 11 (2-3) :259-270
[3]  
[Anonymous], 2008, HDB HETEROGENEOUS CA
[4]   SELECTIVE CONVERSION OF CO2 TO METHANOL BY CATALYTIC-HYDROGENATION OVER PROMOTED COPPER CATALYST [J].
ARAKAWA, H ;
DUBOIS, JL ;
SAYAMA, K .
ENERGY CONVERSION AND MANAGEMENT, 1992, 33 (5-8) :521-528
[5]   Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol [J].
Arena, Francesco ;
Barbera, Katia ;
Italiano, Giuseppe ;
Bonura, Giuseppe ;
Spadaro, Lorenzo ;
Frusteri, Francesco .
JOURNAL OF CATALYSIS, 2007, 249 (02) :185-194
[6]   A study of the thermal decomposition of BaCO3 [J].
Arvanitidis, I ;
Sichen, D ;
Seetharaman, S .
METALLURGICAL AND MATERIALS TRANSACTIONS B-PROCESS METALLURGY AND MATERIALS PROCESSING SCIENCE, 1996, 27 (03) :409-416
[7]  
Baiker A, 2000, APPL ORGANOMET CHEM, V14, P751, DOI 10.1002/1099-0739(200012)14:12<751::AID-AOC85>3.0.CO
[8]  
2-J
[9]   FTIR Spectroscopy combined with isotope labeling and quantum chemical calculations to investigate adsorbed bicarbonate formation following reaction of carbon dioxide with surface hydroxyl groups on Fe2O3 and Al2O3 [J].
Baltrusaitis, J ;
Jensen, JH ;
Grassian, VH .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (24) :12005-12016
[10]   In-situ FT-IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, Al2O3, and TiO2 [J].
Bando, KK ;
Sayama, K ;
Kusama, H ;
Okabe, K ;
Arakawa, H .
APPLIED CATALYSIS A-GENERAL, 1997, 165 (1-2) :391-409