Application of membrane-active peptides for nonviral gene delivery

被引:154
作者
Wagner, E [1 ]
机构
[1] Univ Vienna, Bioctr, Inst Biochem, A-1030 Vienna, Austria
关键词
polylysine; polyethylenimine; receptor-mediated gene transfer; endosomal release; amphipathic peptides; transfection;
D O I
10.1016/S0169-409X(99)00033-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A variety of membrane-modifying agents including pH-specific fusogenic or lytic peptides, bacterial proteins, lipids, glycerol, or inactivated virus particles have been evaluated for the enhancement of DNA-polycation complex-based gene transfer. The enhancement depends on the characteristics of both the cationic carrier for DNA and the membrane-modifying agent. Peptides derived from viral sequences such as the N-terminus of influenza virus haemagglutinin HA-2, the N-terminus of rhinovirus HRV2 VP-1 protein, and other synthetic or natural sequences such as the amphipathic peptides GALA, KALA, EGLA JTS1, or gramicidin S have been tested. Ligand-polylysine-mediated gene transfer can be improved up to more than 1000-fold by membrane-active compounds. Other polycations like dendrimers or polyethylenimines as well as several cationic lipids provide a high transfection efficiency per se. Systems based on these polymers or lipids are only slightly enhanced by endosomolytic peptides or adenoviruses. Electroneutral cationic lipid-DNA complexes however can be strongly improved by the addition of membrane-active peptides, (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
[31]   Gemini Amphiphiles: A Novel Class of Nonviral Gene Delivery Vectors [J].
Kumar, Mukesh ;
Jinturkar, Kaustubh ;
Yadav, M. R. ;
Misra, Ambikanandan .
CRITICAL REVIEWS IN THERAPEUTIC DRUG CARRIER SYSTEMS, 2010, 27 (03) :237-278
[32]   Virus-Inspired Approach to Nonviral Gene Delivery Vehicles [J].
Roy, Raghunath ;
Jerry, D. Joseph ;
Thayumanavan, S. .
BIOMACROMOLECULES, 2009, 10 (08) :2189-2193
[33]   Nonviral gene delivery: What we know and what is next [J].
Xiang Gao ;
Keun-Sik Kim ;
Dexi Liu .
The AAPS Journal, 9
[34]   Glycine-Terminated Dendritic Amphiphiles for Nonviral Gene Delivery [J].
Malhotra, Shashwat ;
Bauer, Hannah ;
Tschiche, Ariane ;
Staedtler, Anna Maria ;
Mohr, Andreas ;
Calderon, Marcelo ;
Parmar, Virinder S. ;
Hoeke, Lena ;
Sharbati, Soroush ;
Einspanier, Ralf ;
Haag, Rainer .
BIOMACROMOLECULES, 2012, 13 (10) :3087-3098
[35]   Nonviral gene delivery: What we know and what is next [J].
Gao, Xiang ;
Kim, Keun-Sik ;
Liu, Dexi .
AAPS JOURNAL, 2007, 9 (01) :E92-E104
[36]   Stepwise Development of Biomimetic Chimeric Peptides for Gene Delivery [J].
Cheraghi, Roya ;
Nazari, Mahboobeh ;
Alipour, Mohsen ;
Hosseinkhani, Saman .
PROTEIN AND PEPTIDE LETTERS, 2020, 27 (08) :698-710
[37]   Biophysical study of novel oligoelectrolyte-based nonviral gene delivery systems for mammalian cells [J].
Ficen, Semra Zuhal ;
Guler, Zeliha ;
Mitina, Nataliya ;
Finiuk, Nataliya ;
Stoika, Rostyslav ;
Zaichenko, Alexander ;
Ceylan, Sebnem Ercelen .
JOURNAL OF GENE MEDICINE, 2013, 15 (05) :193-204
[38]   Optimization of Brush-Like Cationic Copolymers for Nonviral Gene Delivery [J].
Wei, Hua ;
Pahang, Joshuel A. ;
Pun, Suzie H. .
BIOMACROMOLECULES, 2013, 14 (01) :275-284
[39]   Disulfide-Containing Brushed Polyethylenimine Derivative Synthesized by Click Chemistry for Nonviral Gene Delivery [J].
Zhang, Guangyan ;
Liu, Jia ;
Yang, Qizhi ;
Zhuo, Renxi ;
Jiang, Xulin .
BIOCONJUGATE CHEMISTRY, 2012, 23 (06) :1290-1299
[40]   Identifying Intracellular pDNA Losses From a Model of Nonviral Gene Delivery [J].
Martin, Timothy Michael ;
Wysocki, Beata Joanna ;
Wysocki, Tadeusz Antoni ;
Pannier, Angela K. .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2015, 14 (04) :455-464