Application of membrane-active peptides for nonviral gene delivery

被引:154
作者
Wagner, E [1 ]
机构
[1] Univ Vienna, Bioctr, Inst Biochem, A-1030 Vienna, Austria
关键词
polylysine; polyethylenimine; receptor-mediated gene transfer; endosomal release; amphipathic peptides; transfection;
D O I
10.1016/S0169-409X(99)00033-2
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
A variety of membrane-modifying agents including pH-specific fusogenic or lytic peptides, bacterial proteins, lipids, glycerol, or inactivated virus particles have been evaluated for the enhancement of DNA-polycation complex-based gene transfer. The enhancement depends on the characteristics of both the cationic carrier for DNA and the membrane-modifying agent. Peptides derived from viral sequences such as the N-terminus of influenza virus haemagglutinin HA-2, the N-terminus of rhinovirus HRV2 VP-1 protein, and other synthetic or natural sequences such as the amphipathic peptides GALA, KALA, EGLA JTS1, or gramicidin S have been tested. Ligand-polylysine-mediated gene transfer can be improved up to more than 1000-fold by membrane-active compounds. Other polycations like dendrimers or polyethylenimines as well as several cationic lipids provide a high transfection efficiency per se. Systems based on these polymers or lipids are only slightly enhanced by endosomolytic peptides or adenoviruses. Electroneutral cationic lipid-DNA complexes however can be strongly improved by the addition of membrane-active peptides, (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:279 / 289
页数:11
相关论文
共 50 条
[1]   Application of membrane-active peptides for drug and gene delivery across cellular membranes [J].
Plank, C ;
Zauner, W ;
Wagner, E .
ADVANCED DRUG DELIVERY REVIEWS, 1998, 34 (01) :21-35
[2]   Effects of membrane-active agents in gene delivery [J].
Wagner, E .
JOURNAL OF CONTROLLED RELEASE, 1998, 53 (1-3) :155-158
[3]   Branched phospholipids render lipid vesicles more susceptible to membrane-active peptides [J].
Mitchell, Natalie J. ;
Seaton, Pamela ;
Pokorny, Antje .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 2016, 1858 (05) :988-994
[4]   Parallel Synthesis and Screening of Polymers for Nonviral Gene Delivery [J].
Barua, Sutapa ;
Joshi, Amit ;
Banerjee, Akhilesh ;
Matthews, Dana ;
Sharfstein, Susan T. ;
Cramer, Steven M. ;
Kane, Ravi S. ;
Rege, Kaushal .
MOLECULAR PHARMACEUTICS, 2009, 6 (01) :86-97
[5]   Cationic copolymers nanoparticles for nonviral gene vectors: Synthesis, characterization, and application in gene delivery [J].
d'Ayala, Giovanna Gomez ;
Calarco, Anna ;
Malinconico, Mario ;
Laurienzo, Paola ;
Petillo, Orsolina ;
Torpedine, Angela ;
Peluso, Gianfranco .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2010, 94A (02) :619-630
[6]   Nanoparticles as nonviral gene delivery vectors [J].
Ragusa, Andrea ;
Garcia, Isabel ;
Penades, Soledad .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2007, 6 (04) :319-330
[7]   Multifunctional Polypeptide-Based Nanoconjugates for Targeted Mitochondrial Delivery and Nonviral Gene Therapy [J].
Pegoraro, Camilla ;
Sanchis, Esther Masia ;
Dordevic, Snezana ;
Dolz-Perez, Irene ;
Huck-Iriart, Cristian ;
Herrera, Lidia ;
Esteban-Perez, Sergio ;
Conejos-Sanchez, Inmaculada ;
Vicent, Maria J. .
CHEMISTRY OF MATERIALS, 2025, 37 (04) :1457-1467
[8]   pH-sensitive ternary nanoparticles for nonviral gene delivery [J].
Zhang, Ming-Hua ;
Gu, Zhi-Peng ;
Zhang, Xi ;
Fan, Min-Min .
RSC ADVANCES, 2015, 5 (55) :44291-44298
[9]   Polymer functionalized gold nanoparticles as nonviral gene delivery reagents [J].
Encabo-Berzosa, M. Mar ;
Sancho-Albero, Maria ;
Sebastian, Victor ;
Irusta, Silvia ;
Arruebo, Manuel ;
Santamaria, Jesus ;
Martin Duque, Pilar .
JOURNAL OF GENE MEDICINE, 2017, 19 (6-7)
[10]   Hyperbranched polysiloxysilane nanoparticles for nonviral gene delivery vectors and nanoprobes [J].
Kim, Won Jin ;
Bonoiu, Adela C. ;
Lee, Kwang-Sup ;
Hayakawa, Teruaki ;
Xia, Cheng ;
Kakimoto, Masa-aki ;
Pudavar, Haridas E. ;
Prasad, Paras N. .
NANOBIOSYSTEMS: PROCESSING, CHARACTERIZATION, AND APPLICATIONS II, 2009, 7403