Weighted Hardy and singular operators in Morrey spaces

被引:92
作者
Samko, Natasha [1 ]
机构
[1] Univ Algarve, Dept Matemat, P-8005139 Faro, Portugal
关键词
Morrey space; Singular operator; Hardy operator; Hardy-Littlewood maximal operator; Weighted estimate; INTEGRAL-OPERATORS; HOMOGENEOUS TYPE; FRACTIONAL INTEGRALS; RIESZ-POTENTIALS; MAXIMAL OPERATOR; INEQUALITIES; BOUNDEDNESS; CAMPANATO; INFINITY;
D O I
10.1016/j.jmaa.2008.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the weighted boundedness of the Cauchy singular integral operator S-Gamma in Morrey spaces L-p,L-lambda '(Gamma) on Curves satisfying the arc-chord condition, for a class of "radial type" almost monotonic weights. The non-weighted boundedness is shown to hold on an arbitrary Carleson curve. We show that the weighted boundedness is reduced to the boundedness of weighted Hardy operators in Morrey spaces L-p,L-lambda(0. e), e > 0. We find conditions for weighted Hardy operators to be bounded in Morrey spaces. To cover the case of curves we also extend the boundedness of the Hardy-Littlewood maximal operator in Morrey spaces, known in the Euclidean setting, to the case of Carleson curves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 72
页数:17
相关论文
共 49 条
  • [21] Gakhov FD., 1966, BOUND VALUE PROBL
  • [22] García JL, 1999, STUD MATH, V133, P261
  • [23] GENEBASHVILLI I, 1998, PITMAN MONOGR SURV P
  • [24] GOHBERG I, 1992, OPER THEORY ADV APPL, V54
  • [25] Gohberg I., 1992, OPER THEORY ADV APPL, V53
  • [26] Heinonen J., 2012, LECT ANAL METRIC SPA, DOI 10.1007/978-1-4613-0131-8
  • [27] KOKILASHVILI V, 2008, GOVERN COLL U LAHORE, V72, P1
  • [28] Kokilashvili Vakhtang., 2007, Operator Theory: Advances and Applications, V170, P167, DOI [DOI 10.1007/978-3-7643-7737-3_10, 10.1007/978-3-7643-7737-3_10]
  • [29] Krein S. G., 1978, Interpolation of linear operators
  • [30] Kufner A., 1977, Function Spaces