Weighted Hardy and singular operators in Morrey spaces

被引:92
作者
Samko, Natasha [1 ]
机构
[1] Univ Algarve, Dept Matemat, P-8005139 Faro, Portugal
关键词
Morrey space; Singular operator; Hardy operator; Hardy-Littlewood maximal operator; Weighted estimate; INTEGRAL-OPERATORS; HOMOGENEOUS TYPE; FRACTIONAL INTEGRALS; RIESZ-POTENTIALS; MAXIMAL OPERATOR; INEQUALITIES; BOUNDEDNESS; CAMPANATO; INFINITY;
D O I
10.1016/j.jmaa.2008.09.021
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the weighted boundedness of the Cauchy singular integral operator S-Gamma in Morrey spaces L-p,L-lambda '(Gamma) on Curves satisfying the arc-chord condition, for a class of "radial type" almost monotonic weights. The non-weighted boundedness is shown to hold on an arbitrary Carleson curve. We show that the weighted boundedness is reduced to the boundedness of weighted Hardy operators in Morrey spaces L-p,L-lambda(0. e), e > 0. We find conditions for weighted Hardy operators to be bounded in Morrey spaces. To cover the case of curves we also extend the boundedness of the Hardy-Littlewood maximal operator in Morrey spaces, known in the Euclidean setting, to the case of Carleson curves. (c) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:56 / 72
页数:17
相关论文
共 49 条
  • [1] Adams DR, 2004, INDIANA U MATH J, V53, P1629
  • [2] ADAMS DR, 1975, DUKE MATH J, V42, P765, DOI 10.1215/S0012-7094-75-04265-9
  • [3] Almeida A, 2008, GEORGIAN MATH J, V15, P195
  • [4] ALVAREZ J, 1994, B UNIONE MAT ITAL, V8A, P123
  • [5] ALVAREZ J, 1981, P AM MATH SOC, V83, P693
  • [6] [Anonymous], 2004, Fract. Calc. Appl. Anal.
  • [7] [Anonymous], 1971, Lecture Notes in Mathematics
  • [8] [Anonymous], 1983, MULTIPLE INTEGRALS C
  • [9] [Anonymous], 2001, Sci. Math. Jpn
  • [10] [Anonymous], 1999, Proc. A. Razmadze Math. Inst.