Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces

被引:5
|
作者
Xie, Zhongbing [1 ]
Cai, Gang [2 ]
Tan, Bing [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[4] Univ British Columbia, Dept Math, Kelowna, BC, Canada
基金
中国国家自然科学基金;
关键词
Equilibrium problem; fixed point; pseudomonotone bifunction; strong convergence; subgradient extragradient method; VARIATIONAL INEQUALITY PROBLEMS; CONVERGENCE THEOREMS; APPROXIMATION METHOD; SADDLE-POINTS; ALGORITHMS; PROJECTION; SYSTEM; VISCOSITY; MAPPINGS; FAMILY;
D O I
10.1080/02331934.2022.2157677
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a new inertial subgradient extragradient method for solving equilibrium problems with pseudomonotone and Lipschitz-type bifunctions and fixed point problems for nonexpansive mappings in real Hilbert spaces. Precisely, we prove that the sequence generated by proposed algorithm converges strongly to a common solution of equilibrium problems and fixed point problems. We use an effective self-adaptive step size rule to accelerate the convergence process of our proposed iterative algorithm. Moreover, some numerical results are given to show the effectiveness of the proposed algorithm. The results obtained in this paper extend and improve many recent ones in the literature.
引用
收藏
页码:1329 / 1354
页数:26
相关论文
共 50 条
  • [21] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Duong Viet Thong
    Prasit Cholamjiak
    Michael T. Rassias
    Yeol Je Cho
    Optimization Letters, 2022, 16 : 545 - 573
  • [22] Modified projected subgradient method for solving pseudomonotone equilibrium and fixed point problems in Banach spaces
    Jolaoso, Lateef Olakunle
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (03)
  • [23] The subgradient extragradient method for pseudomonotone equilibrium problems
    Dadashi, Vahid
    Iyiola, Olaniyi S.
    Shehu, Yekini
    OPTIMIZATION, 2020, 69 (04) : 901 - 923
  • [24] Inertial subgradient extragradient with projection method for solving variational inequality and fixed point problems
    Maluleka, Rose
    Ugwunnadi, Godwin Chidi
    Aphane, Maggie
    AIMS MATHEMATICS, 2023, 8 (12): : 30102 - 30119
  • [25] Solving equilibrium and fixed-point problems in Hilbert spaces: A class of strongly convergent Mann-type dual-inertial subgradient extragradient methods
    Rehman, Habib ur
    Ghosh, Debdas
    Yao, Jen-Chih
    Zhao, Xiaopeng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 464
  • [26] Modified inertial subgradient extragradient method for equilibrium problems
    Jolaoso, Lateef Olakunle
    Shehu, Yekini
    Nwokoye, Regina N.
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (02) : 599 - 616
  • [27] Halpern inertial subgradient extragradient algorithm for solving equilibrium problems in Banach spaces
    Abass, H. A.
    APPLICABLE ANALYSIS, 2025, 104 (02) : 314 - 335
  • [28] An Accelerated Extragradient Method for Solving Pseudomonotone Equilibrium Problems with Applications
    Wairojjana, Nopparat
    Rehman, Habib Ur
    Argyros, Ioannis K.
    Pakkaranang, Nuttapol
    AXIOMS, 2020, 9 (03)
  • [29] A Hybrid Extragradient Method for Pseudomonotone Equilibrium Problems and Fixed Point Problems
    Pham Ngoc Anh
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (01) : 107 - 116
  • [30] Dynamical inertial extragradient techniques for solving equilibrium and fixed-point problems in real Hilbert spaces
    Bancha Panyanak
    Chainarong Khunpanuk
    Nattawut Pholasa
    Nuttapol Pakkaranang
    Journal of Inequalities and Applications, 2023