Inertial subgradient extragradient method for solving pseudomonotone equilibrium problems and fixed point problems in Hilbert spaces

被引:6
|
作者
Xie, Zhongbing [1 ]
Cai, Gang [2 ]
Tan, Bing [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Chongqing Normal Univ, Sch Math Sci, Chongqing, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Math Sci, Chengdu, Peoples R China
[4] Univ British Columbia, Dept Math, Kelowna, BC, Canada
基金
中国国家自然科学基金;
关键词
Equilibrium problem; fixed point; pseudomonotone bifunction; strong convergence; subgradient extragradient method; VARIATIONAL INEQUALITY PROBLEMS; CONVERGENCE THEOREMS; APPROXIMATION METHOD; SADDLE-POINTS; ALGORITHMS; PROJECTION; SYSTEM; VISCOSITY; MAPPINGS; FAMILY;
D O I
10.1080/02331934.2022.2157677
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
This paper proposes a new inertial subgradient extragradient method for solving equilibrium problems with pseudomonotone and Lipschitz-type bifunctions and fixed point problems for nonexpansive mappings in real Hilbert spaces. Precisely, we prove that the sequence generated by proposed algorithm converges strongly to a common solution of equilibrium problems and fixed point problems. We use an effective self-adaptive step size rule to accelerate the convergence process of our proposed iterative algorithm. Moreover, some numerical results are given to show the effectiveness of the proposed algorithm. The results obtained in this paper extend and improve many recent ones in the literature.
引用
收藏
页码:1329 / 1354
页数:26
相关论文
共 50 条