Transport maps for β-matrix models in the multi-cut regime

被引:5
作者
Bekerman, Florent [1 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
关键词
Random matrices; beta-ensembles; central limit theorem; linear statistics; UNIVERSALITY; ENSEMBLES; SPECTRUM; EDGE;
D O I
10.1142/S2010326317500137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the transport methods develop in [F. Bekerman, A. Figalli and A. Guionnet, Transport maps for beta-matrix models and universality, Commun. Math. Phys. 338(2) (2013) 589-619] to obtain universality results for local statistics of eigenvalues in the bulk and at the edge for beta-matrix models in the multi-cut regime. We construct an approximate transport map inbetween two probability measures from the fixed filling fraction model discussed in [G. Borot, A. Guionnet and K. K. Kozlowski, Large-N asymptotic expansion for mean field models with coulomb gas interaction, Int. Math. Res. Not. (2015)] and deduce from it universality in the initial model.
引用
收藏
页数:36
相关论文
共 24 条
[21]   Change of variables as a method to study general β-models: Bulk universality [J].
Shcherbina, M. .
JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (04)
[22]   Fluctuations of Linear Eigenvalue Statistics of β Matrix Models in the Multi-cut Regime [J].
Shcherbina, M. .
JOURNAL OF STATISTICAL PHYSICS, 2013, 151 (06) :1004-1034
[23]   The asymptotic distribution of a single eigenvalue gap of a Wigner matrix [J].
Tao, Terence .
PROBABILITY THEORY AND RELATED FIELDS, 2013, 157 (1-2) :81-106
[24]   Continuum limits of random matrices and the Brownian carousel [J].
Valko, Benedek ;
Virag, Balint .
INVENTIONES MATHEMATICAE, 2009, 177 (03) :463-508