Ag-Ti (100 nm) alloy film, and Ti/Ag (100 nm) double-layer and Ti/Ag (100 nm)/Ti triple-layer films were prepared by rf sputtering to investigate the effect of Ti on suppression of agglomeration of the Ag thin film caused by thermal treatment. Scanning electron microscopy revealed that the Ag-Ti and Ti/Ag/Ti films had high thermal stability. X-ray photoelectron spectroscopy analysis showed that the surfaces of both kinds of films were covered with a TiO2 layer after annealing, which was considered to be the key factor for improvement of the thermal stability of the films. In addition, scratch tests indicated improvement of the adhesive strength of the Ti/Ag/Ti film to the SiO2 substrate due to the underlying Ti film layer, which effectively promoted suppression of Ag agglomeration. However, the resistivity of the Ag Ti films increased abruptly with increasing Ti content due to the impurity scattering effect, and minimum usage of the alloying element was required to achieve low resistivity. In contrast, the Ti/Ag/Ti film exhibited both low resistivity and high thermal stability. (C) 2012 Elsevier Ltd. All rights reserved.