Accuracy control in Monte Carlo simulations of particle breakage

被引:3
作者
Devi, Jherna [1 ,2 ,3 ]
Kotalczyk, Gregor [1 ,2 ]
Kruis, Frank Einar [1 ,2 ]
机构
[1] Univ Duisburg Essen, Inst Technol Nanostruct NST, D-47057 Duisburg, Germany
[2] Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, D-47057 Duisburg, Germany
[3] Quaid E Awam Univ Engn Sci & Technol, Dept Informat Technol, Nawabshah 67480, Sindh, Pakistan
关键词
Monte Carlo; population balance; weighted particles; simulation; GPU; breakage; optimisation; control; STIRRED-MEDIA; TIME-DRIVEN; COAGULATION; NUCLEATION; RESOLUTION; ALGORITHM; SYSTEM; GROWTH; MILLS;
D O I
10.1504/IJMIC.2019.098774
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Monte Carlo (MC) methods are an important tool for the numerical solution of the population balance equation, allowing the optimisation and control of particulate processes on laboratory or plant scales. We investigate in this work a family of MC methods for particle breakage proposed by Kotalczyk et al. (2017, pp. 417-429). The authors reported that specific breakage schemes (defined by a combination factor R) allow rendering the full particle size distribution. They also showed that specific ranges of the combination factor R might lead to severe systematic errors, but did not investigate measures of control or prevention. In this paper, a strategy which allows estimating the magnitude of the systematic error from the simulation data is presented. It is also shown how the simulation parameters can be set in order to keep the systematic error at an acceptable level.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 37 条
[1]   Analysis and modelling of bead contacts in wet-operating stirred media and planetary ball mills with CFD-DEM simulations [J].
Beinert, S. ;
Fragniere, G. ;
Schilde, C. ;
Kwade, A. .
CHEMICAL ENGINEERING SCIENCE, 2015, 134 :648-662
[2]   Process engineering with planetary ball mills [J].
Burmeister, Christine Friederike ;
Kwade, Arno .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (18) :7660-7667
[3]  
Devi J, 2017, C P IEEE
[4]   Simulation of coalescence and breakage: an assessment of two stochastic methods suitable for simulating liquid-liquid extraction [J].
Goodson, M ;
Kraft, M .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (18) :3865-3881
[5]   Characterization and modeling of a sub-micron milling process limited by agglomeration phenomena [J].
Hennart, S. L. A. ;
van Hee, P. ;
Drouet, V. ;
Domingues, M. C. ;
Wildeboer, W. J. ;
Meesters, G. M. H. .
CHEMICAL ENGINEERING SCIENCE, 2012, 71 :484-495
[6]   Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances [J].
Hennart, S. L. A. ;
Wildeboer, W. J. ;
van Hee, P. ;
Meesters, G. M. H. .
CHEMICAL ENGINEERING SCIENCE, 2009, 64 (19) :4123-4130
[7]   NEW DISCRETIZATION PROCEDURE FOR THE BREAKAGE EQUATION [J].
HILL, PJ ;
NG, KM .
AICHE JOURNAL, 1995, 41 (05) :1204-1216
[8]   Hybrid genetic algorithm-swarm intelligence-based tuning of temperature controller for continuously stirred tank reactor [J].
Kantha, Aditya Sarjak ;
Utkarsh, Ayush ;
Jatoth, Ravi Kumar .
INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2016, 25 (03) :239-248
[9]   Nanoparticle Production with Stirred-Media Mills: Opportunities and Limits [J].
Knieke, Catharina ;
Steinborn, Carola ;
Romeis, Stefan ;
Peukert, Wolfgang ;
Breitung-Faes, Sandra ;
Kwade, Arno .
CHEMICAL ENGINEERING & TECHNOLOGY, 2010, 33 (09) :1401-1411
[10]   A Monte Carlo method for the simulation of coagulation and nucleation based on weighted particles and the concepts of stochastic resolution and merging [J].
Kotalczyk, G. ;
Kruis, F. E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 340 :276-296