Calorimetric investigation of intersublevel transitions in charged quantum dots

被引:6
作者
Goede, K
Weber, A
Guffarth, F
Kapteyn, CMA
Heinrichsdorff, F
Heitz, R
Bimberg, D
Grundmann, M
机构
[1] Univ Leipzig, Inst Expt Phys 2, D-04103 Leipzig, Germany
[2] Tech Univ Berlin, Inst Festkorperphys, D-10623 Berlin, Germany
关键词
D O I
10.1103/PhysRevB.64.245317
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Intersublevel transitions in InGaAs quantum dots (QD's) are observed by means of midinfrared Fourier transform calorimetric absorption spectroscopy, This technique permits one to measure spectrally resolved the heating of a sample illuminated by a midinfrared radiation source. Thus, effectively a QD bolometer for the midinfrared energy range has been realized, allowing for sensitive absorption studies. Absorption peaks observed in the 70 to 110 meV range are attributed to electron intersublevel transitions based on a comparison to exciton properties derived from photoluminescence and photoluminescence-excitation measurements. For charge-tunable QD's in a space charge region, the population of ground and excited electron sublevels can be changed by the applied reverse bias, allowing for an identification of the observed intersublevel transitions on the basis of their charging dependence. Charging-dependent energy shifts and intensity changes of the intersublevel absorption peaks are ascribed to few-particle effects and to Pauli blockade effects. respectively. The QD intersublevel absorption cross section is estimated to be of the order of 10(-13) cm(2), the according, absorption coefficient is comparable to that of QD interband (exciton) transitions.
引用
收藏
页码:2453171 / 2453177
页数:7
相关论文
共 48 条
[1]  
[Anonymous], BERLIN STUDIES SOLID
[2]   INTRINSIC MECHANISM FOR THE POOR LUMINESCENCE PROPERTIES OF QUANTUM-BOX SYSTEMS [J].
BENISTY, H ;
SOTOMAYORTORRES, CM ;
WEISBUCH, C .
PHYSICAL REVIEW B, 1991, 44 (19) :10945-10948
[3]   CALORIMETRIC ABSORPTION-SPECTROSCOPY OF NONRADIATIVE RECOMBINATION PROCESSES IN GAP [J].
BIMBERG, D ;
BUBENZER, A .
APPLIED PHYSICS LETTERS, 1981, 38 (10) :803-805
[4]  
Bimberg D., 1999, QUANTUM DOT HETEROST
[5]   SEMICONDUCTING AND OTHER MAJOR PROPERTIES OF GALLIUM-ARSENIDE [J].
BLAKEMORE, JS .
JOURNAL OF APPLIED PHYSICS, 1982, 53 (10) :R123-R181
[6]   Normal incidence InAs/AlxGa1-xAs quantum dot infrared photodetectors with undoped active region [J].
Chen, ZH ;
Baklenov, O ;
Kim, ET ;
Mukhametzhanov, I ;
Tie, J ;
Madhukar, A ;
Ye, Z ;
Campbell, JC .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (08) :4558-4563
[7]   Lateral intersubband photocurrent spectroscopy on InAs/GaAs quantum dots [J].
Chu, L ;
Zrenner, A ;
Böhm, G ;
Abstreiter, G .
APPLIED PHYSICS LETTERS, 2000, 76 (14) :1944-1946
[8]  
COCHRAN W, 1961, J APPL PHYS, V32, P2102, DOI 10.1063/1.1777024
[9]   SPECTROSCOPY OF QUANTUM LEVELS IN CHARGE-TUNABLE INGAAS QUANTUM DOTS [J].
DREXLER, H ;
LEONARD, D ;
HANSEN, W ;
KOTTHAUS, JP ;
PETROFF, PM .
PHYSICAL REVIEW LETTERS, 1994, 73 (16) :2252-2255
[10]   Self-consistent calculation of the electronic structure and electron-electron interaction in self-assembled InAs-GaAs quantum dot structures [J].
Fonseca, LRC ;
Jimenez, JL ;
Leburton, JP ;
Martin, RM .
PHYSICAL REVIEW B, 1998, 57 (07) :4017-4026