Automated calculations for computing the sample-limited spatial resolution in (scanning) transmission electron microscopy

被引:5
|
作者
Zulfiqar, Abid [1 ,2 ]
Azim, Sana [1 ]
Ortega, Eduardo [1 ]
de Jonge, Niels [1 ,2 ]
机构
[1] INM Leibniz Inst New Mat, D-66123 Saarbrucken, Germany
[2] Saarland Univ, Dept Phys, D-66123 Saarbrucken, Germany
关键词
TEM; STEM; Electron scattering; Spatial resolution; Electron dose; Computer model;
D O I
10.1016/j.ultramic.2022.113611
中图分类号
TH742 [显微镜];
学科分类号
摘要
MATLAB scripts were designed to compute the sample-limited spatial resolution in transmission electron mi-croscopy (TEM) and scanning TEM (STEM) as a function of different microscopy parameters including the electron dose eD, sample geometry, and materials parameters. The scripts can be used to select the optimum microscopy modality and optimize the experimental conditions to achieve the best possible resolution consid-ering the limitations set by both the electron optics and the examined sample. The resolution can be computed as function of the objective opening semi-angle alpha for TEM and detector opening semi-angle beta for STEM. Optional code for computing a range over the sample thickness t or eD are provided as well, whereby the opening angle is optimized for each data point. The spatial resolution depends on the type of material of the nanoscale object (for example, gold or carbon nanoparticles), the type of matrix holding the objects (for example, water or ice), the depth of the nanoscale object inside the matrix, and eD. The optimization is consistent with the typical situation that carbon nanoparticles are best examined with TEM embedded in a thin matrix (t = 0.1 mu m), while STEM is better suited for high atomic number objects such as gold nanoparticles in water, irrespective of t. The script also calculates the reduction of beam broadening in thick samples (t > 1 mu m) using bright field STEM.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Image potential in scanning transmission electron microscopy
    Rivacoba, A
    Zabala, N
    Aizpurua, J
    PROGRESS IN SURFACE SCIENCE, 2000, 65 (1-2) : 1 - 64
  • [32] Scanning moire fringe imaging by scanning transmission electron microscopy
    Su, Dong
    Zhu, Yimei
    ULTRAMICROSCOPY, 2010, 110 (03) : 229 - 233
  • [33] Elemental mapping in scanning transmission electron microscopy
    Allen, L. J.
    D'Alfonso, A. J.
    Findlay, S. D.
    LeBeau, J. M.
    Lugg, N. R.
    Stemmer, S.
    ELECTRON MICROSCOPY AND ANALYSIS GROUP CONFERENCE 2009 (EMAG 2009), 2010, 241
  • [34] On the history of scanning electron microscopy, of the electron microprobe, and of early contributions to transmission electron microscopy
    Von Ardenne M.
    Hawkes P.
    Mulvey T.
    Advances in Imaging and Electron Physics, 2021, 220 : 25 - 50
  • [35] Increasing the Resolution of Transmission Electron Microscopy by Computational Ghost Imaging
    Rosi, P.
    Viani, L.
    Rotunno, E.
    Frabboni, S.
    Tavabi, A. H.
    Dunin-Borkowski, R. E.
    Roncaglia, A.
    Grillo, V.
    PHYSICAL REVIEW LETTERS, 2024, 133 (12)
  • [36] Metal-Graphene Interaction Studied via Atomic Resolution Scanning Transmission Electron Microscopy
    Zan, Recep
    Bangert, Ursa
    Ramasse, Quentin
    Novoselov, Konstantin S.
    NANO LETTERS, 2011, 11 (03) : 1087 - 1092
  • [37] Resolution of Virtual Depth Sectioning from Four-Dimensional Scanning Transmission Electron Microscopy
    Terzoudis-Lumsden, E. W. C.
    Petersen, T. C.
    Brown, H. G.
    Pelz, P. M.
    Ophus, C.
    Findlay, S. D.
    MICROSCOPY AND MICROANALYSIS, 2023, 29 (04) : 1409 - 1421
  • [38] Partial Scanning Transmission Electron Microscopy with Deep Learning
    Ede, Jeffrey M.
    Beanland, Richard
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [39] Phase-contrast scanning transmission electron microscopy
    Minoda, Hiroki
    Tamai, Takayuki
    Iijima, Hirofumi
    Hosokawa, Fumio
    Kondo, Yukihito
    MICROSCOPY, 2015, 64 (03) : 181 - 187
  • [40] Standardless Atom Counting in Scanning Transmission Electron Microscopy
    LeBeau, James M.
    Findlay, Scott D.
    Allen, Leslie J.
    Stemmer, Susanne
    NANO LETTERS, 2010, 10 (11) : 4405 - 4408