QUASI-PERIODIC SOLUTIONS OF THE RELATIVISTIC TODA HIERARCHY

被引:4
作者
Gong, Dong [1 ]
Geng, Xianguo [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Relativistic Toda hierarchy; quasi-periodic solutions; RECURSION OPERATOR; LATTICE;
D O I
10.1142/S1402925112500301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On the basis of the theory of algebraic curves, the continuous flow and discrete flow related to the relativistic Toda hierarchy are straightened out using the Abel-Jacobi coordinates. The meromorphic function and the Baker-Akhiezer function are introduced on the hyperelliptic curve. Quasi-periodic solutions of the relativistic Toda hierarchy are constructed with the help of the asymptotic properties and the algebro-geometric characters of the meromorphic function and the hyperelliptic curve.
引用
收藏
页码:489 / 523
页数:35
相关论文
共 19 条
[1]   ON FINITE-ZONE SOLUTIONS OF RELATIVISTIC TODA-LATTICES [J].
ALBER, SJ .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (02) :149-155
[2]  
[Anonymous], 1984, Tata Lectures on Theta
[3]   RECURSION OPERATOR AND BACKLUND-TRANSFORMATIONS FOR THE RUIJS']JSENAARS-TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1988, 129 (01) :21-25
[4]   LAX REPRESENTATION AND COMPLETE-INTEGRABILITY FOR THE PERIODIC RELATIVISTIC TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1989, 134 (06) :365-370
[5]  
Bulla W, 1998, MEM AM MATH SOC, V135, P1
[6]   Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable [J].
Cao, CW ;
Geng, XG ;
Wang, HY .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :621-643
[7]   Explicit solutions of the 2+1-dimensional modified Toda lattice through straightening out of the relativistic Toda flows [J].
Dai, HH ;
Geng, XG .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72 (12) :3063-3069
[8]   Algebro-geometric constructions of the discrete Ablowitz-Ladik flows and applications [J].
Geng, XG ;
Dai, HH ;
Cao, CW .
JOURNAL OF MATHEMATICAL PHYSICS, 2003, 44 (10) :4573-4588
[9]  
Geng XG, 2007, STUD APPL MATH, V118, P281
[10]   Algebro-geometric solutions of the Baxter-Szego difference equation [J].
Geronimo, JS ;
Gesztesy, F ;
Holden, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 258 (01) :149-177