Comments on "Analysis and application of a novel three-dimensional energy-saving and emission-reduction dynamic evolution system" [Energy 40 (2012) 291-299]

被引:6
作者
Algaba, Antonio [1 ]
Fernandez-Sanchez, Fernando [2 ]
Merino, Manuel [1 ]
Rodriguez-Luis, Alejandro J. [2 ]
机构
[1] Univ Huelva, Fac Ciencias Expt, Dept Matemat, Huelva 21071, Spain
[2] Univ Seville, ES Ingenieros, Dept Matemat Aplicada 2, Seville 41092, Spain
关键词
Energy-saving and emission-reduction; Carbon emissions; Undetermined coefficient method; Silnikov homoclinic; Chaos; AUTONOMOUS CHAOTIC SYSTEM; DEMAND-SUPPLY SYSTEM; HETEROCLINIC ORBITS; SILNIKOV CHAOS; SHILNIKOV TYPE; CHEN CIRCUIT; TIME-DELAY; EXISTENCE; ATTRACTOR;
D O I
10.1016/j.energy.2012.07.033
中图分类号
O414.1 [热力学];
学科分类号
摘要
In the commented paper the authors propose a novel three-dimensional energy-saving and emission-reduction system. They claim to prove the existence of Silnikov homoclinic orbits by using the undetermined coefficient method and, consequently, the Silnikov theorem guarantees that the system has Smale horseshoes and the horseshoe chaos. Unfortunately, their demonstration is invalid because the form of the function they assume in the series expansion for the homoclinic orbits is incorrect. Namely, they compose the homoclinic orbit of the same manifold, which is stable in forward time and unstable in reverse time. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:630 / 633
页数:4
相关论文
共 42 条
[21]   Heteroclinic orbits in Chen circuit with time delay [J].
Ren, Hai Peng ;
Li, Wen Chao .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (10) :3058-3066
[22]  
Sun F.Y., 2007, INT J PURE APPL MATH, V36, P295
[23]   Shil'nikov heteroclinic orbits in a chaotic system [J].
Sun, Feng-Yun .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2007, 21 (25) :4429-4436
[24]   An energy resources demand-supply system and its dynamical analysis [J].
Sun, Mei ;
Tian, Lixin ;
Fu, Ying .
CHAOS SOLITONS & FRACTALS, 2007, 32 (01) :168-180
[25]   Energy resources demand-supply system analysis and empirical research based on non-linear approach [J].
Sun, Mei ;
Wang, Xiaofang ;
Chen, Ying ;
Tian, Lixin .
ENERGY, 2011, 36 (09) :5460-5465
[26]   Analysis of a 3D chaotic system [J].
Tigan, Gheorghe ;
Opris, Dumitru .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1315-1319
[27]   Shil'nikov Analysis of Homoclinic and Heteroclinic Orbits of the T System [J].
Van Gorder, Robert A. ;
Choudhury, S. Roy .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2011, 6 (02)
[28]   Existence of a new three-dimensional chaotic attractor [J].
Wang, Jiezhi ;
Chen, Zengqiang ;
Yuan, Zhuzhi .
CHAOS SOLITONS & FRACTALS, 2009, 42 (05) :3053-3057
[29]   Si'lnikov-type orbits of Lorenz-family systems [J].
Wang, Junwei ;
Zhao, Meichun ;
Zhang, Yanbin ;
Xiong, Xiaohua .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (02) :438-446
[30]   Si'lnikov chaos and Hopf bifurcation analysis of Rucklidge system [J].
Wang, Xia .
CHAOS SOLITONS & FRACTALS, 2009, 42 (04) :2208-2217