Syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages

被引:10
作者
Brzozowski, Janusz [1 ]
Li, Baiyu [1 ]
Ye, Yuli [2 ]
机构
[1] Univ Waterloo, David R Cheriton Sch Comp Sci, Waterloo, ON N2L 3G1, Canada
[2] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Bifix-free; Factor-free; Finite automaton; Monoid; Prefix-free; Regular language; Reversal; Semigroup; Suffix-free; Syntactic complexity;
D O I
10.1016/j.tcs.2012.04.011
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The syntactic complexity of a regular language is the cardinality of its syntactic semigroup. The syntactic complexity of a subclass of the class of regular languages is the maximal syntactic complexity of languages in that class, taken as a function of the state complexity n of these languages. We study the syntactic complexity of prefix-, suffix-, bifix-, and factor-free regular languages. We prove that n(n-2) is a tight upper bound for prefix-free regular languages. We present properties of the syntactic semigroups of suffix-, bifix-, and factor-free regular languages, conjecture tight upper bounds on their size to be (n-1)(n-2) + (n-2), (n - 1)(n-3) + (n - 2)(n-3) + (n - 3)(n-3), and (n - 1)(n-3) + (n - 3)2(n-3) + 1, respectively, and exhibit languages with these syntactic complexities. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 25 条
[1]  
[Anonymous], CODES AUTOMATA
[2]  
[Anonymous], 1970, Soviet Mathematics Doklady
[3]  
Brzozowski Janusz, 2011, Developments in Language Theory. Proceedings 15th International Conference, DLT 2011, P117, DOI 10.1007/978-3-642-22321-1_11
[4]  
Brzozowski J., 2011, AUTOMATA FORMAL LANG, P123
[5]  
Brzozowski J., 2011, SYNTACTIC COMPLEXITY
[6]  
Brzozowski J.A., 1963, PROC S MATH THEORY A, V12, P529
[7]  
Brzozowski Janusz A., 2010, Journal of Automata, Languages and Combinatorics, V15, P71
[8]  
Denes J., 1968, THEORY GRAPHS, P65
[9]  
Ganyushkin O, 2009, ALGEBRA APPL, V9, P1, DOI 10.1007/978-1-84800-281-4_1
[10]  
GAP-Group, 2010, GAP GROUPS ALG PROGR