ENVELOPE SOLITONS, PERIODIC WAVES AND OTHER SOLUTIONS TO BOUSSINESQ-BURGERS EQUATION

被引:0
作者
Ebadi, Ghodrat [1 ]
Yousefzadeh, Nazila [1 ]
Triki, Houria [2 ]
Yildirim, Ahmet [3 ,4 ]
Biswas, Anjan [5 ]
机构
[1] Univ Tabriz, Dept Math Sci, Tabriz 5166614766, Iran
[2] Badji Mokhtar Univ, Dept Phys, Radiat Phys Lab, Anaba 2300, Algeria
[3] Ege Univ, Dept Math, TR-35100 Izmir, Turkey
[4] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[5] Delaware State Univ, Dept Math Sci, Dover, DE 19901 USA
关键词
topological soliton; cnoidal wave solutions; Jacobi elliptic function method; Boussinesq-Burgers equations; SUB-ODE METHOD; NONLINEAR SCHRODINGER-EQUATION; DARBOUX TRANSFORMATION; MULTISOLITON SOLUTIONS; OPTICAL SOLITONS; MKDV EQUATION; DISPERSION; EVOLUTION; KDV;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This paper retrieves the topological soliton and cnoidal wave solutions to the Boussinesq-Burgers equations. By using the Jacobi elliptic function method, we find the exact periodic solutions for the considered model. Exact travelling wave solutions which include new envelope solitary and shock wave solutions are obtained. The conditions of the existence of the derived solutions are presented.
引用
收藏
页码:915 / 932
页数:18
相关论文
共 20 条
  • [11] Bright and dark soliton solutions for a K(m, n) equation with t-dependent coefficients
    Triki, Houria
    Wazwaz, Abdul-Majid
    [J]. PHYSICS LETTERS A, 2009, 373 (25) : 2162 - 2165
  • [12] Physics and mathematics of dispersion-managed optical solitons
    Turitsyn, SK
    Shapiro, EG
    Medvedev, SB
    Fedoruk, MP
    Mezentsev, VK
    [J]. COMPTES RENDUS PHYSIQUE, 2003, 4 (01) : 145 - 161
  • [13] Sub-ODE method and solitary wave solutions for higher order nonlinear Schrodinger equation
    Wang, Mingliang
    Li, Xiangzheng
    Zhang, Jinliang
    [J]. PHYSICS LETTERS A, 2007, 363 (1-2) : 96 - 101
  • [14] Lax pair, Backlund transformation and multi-soliton solutions for the Boussinesq-Burgers equations from shallow water waves
    Wang, Pan
    Tian, Bo
    Liu, Wen-Jun
    Lue, Xing
    Jiang, Yan
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) : 1726 - 1734
  • [15] New solitary wave solutions to the modified Kawahara equation
    Wazwaz, Abdul-Majid
    [J]. PHYSICS LETTERS A, 2007, 360 (4-5) : 588 - 592
  • [17] New exact solution structures and nonlinear dispersion in the coupled nonlinear wave systems
    Yan, Zhenya
    [J]. PHYSICS LETTERS A, 2007, 361 (03) : 194 - 200
  • [18] Jacobi elliptic function solutions of the generalized Zakharov-Kuznetsov equation with nonlinear dispersion and t-dependent coefficients
    Yomba, Emmanuel
    [J]. PHYSICS LETTERS A, 2010, 374 (15-16) : 1611 - 1615
  • [19] N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    [J]. PHYSICA SCRIPTA, 2010, 81 (04)
  • [20] On the solitary wave solutions for nonlinear Hirota-Satsuma coupled KdV of equations
    Zayed, EME
    Zedan, HA
    Gepreel, KA
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 22 (02) : 285 - 303