Achieving high tensile elongation in an ultra-fine grained Al alloy via low dislocation density

被引:28
作者
Lin, Yaojun [1 ,2 ]
Zhang, Yongan [3 ]
Xiong, Baiqing [3 ]
Lavernia, Enrique J. [4 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Coll Mat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[3] Gen Res Inst Nonferrous Met, State Key Lab Nonferrous Met & Proc, Beijing 100088, Peoples R China
[4] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
关键词
Metals and alloys; Structural nanocrystalline materials; Dislocation; Tensile elongation; Work hardening; Aluminum alloys; SEVERE PLASTIC-DEFORMATION; THERMAL-STABILITY; DUCTILITY; EVOLUTION; STRENGTH; COPPER;
D O I
10.1016/j.matlet.2012.05.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An ultra-fine grained (UFG) 5083 Al produced by conventional extrusion of a fine-grained (FG) precursor exhibits a high tensile elongation (15.7% of uniform elongation in engineering strain) and a reasonably high tensile strength. In light of our results, the high tensile elongation is primarily attributable to the low dislocation density (5 x 10(12) m(-2)) in the UFG 5083 Al. The low dislocation density effectively improves the tensile elongation of an UFG material via two possible mechanisms: (i) enhancing the formation of dislocation tangling and (ii) minimizing the possibility of localized shear banding. Moreover, our results suggest that conventional plastic deformation of FG precursor materials provides a feasible approach for the synthesis of UFG materials that contain a low density of dislocations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 20 条
[11]  
Prangnell PB, 2001, P 22 RIS INT S MAT S, P105
[12]   Novel ultra-high straining process for bulk materials - Development of the accumulative roll-bonding (ARB) process [J].
Saito, Y ;
Utsunomiya, H ;
Tsuji, N ;
Sakai, T .
ACTA MATERIALIA, 1999, 47 (02) :579-583
[13]   Ultrafine grain formation in ferritic stainless steel during severe plastic deformation [J].
Sakai, T. ;
Belyakov, A. ;
Miura, H. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2008, 39A (09) :2206-2214
[14]   MATERIALS PROCESSING BY SIMPLE SHEAR [J].
SEGAL, VM .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1995, 197 (02) :157-164
[15]   Superplasticity of ultra-fine grained Al-Mg alloy produced by accumulative roll-bonding [J].
Tsuji, N ;
Shiotsuki, K ;
Saito, Y .
MATERIALS TRANSACTIONS JIM, 1999, 40 (08) :765-771
[16]   Bulk nanostructured materials from severe plastic deformation [J].
Valiev, RZ ;
Islamgaliev, RK ;
Alexandrov, IV .
PROGRESS IN MATERIALS SCIENCE, 2000, 45 (02) :103-189
[17]   High tensile ductility in a nanostructured metal [J].
Wang, YM ;
Chen, MW ;
Zhou, FH ;
Ma, E .
NATURE, 2002, 419 (6910) :912-915
[18]   Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density [J].
Zhao, Y. H. ;
Bingert, J. F. ;
Zhu, Y. T. ;
Liao, X. Z. ;
Valiev, R. Z. ;
Horita, Z. ;
Langdon, T. G. ;
Zhou, Y. Z. ;
Lavernia, E. J. .
APPLIED PHYSICS LETTERS, 2008, 92 (08)
[19]   Influence of specimen dimensions and strain measurement methods on tensile stress-strain curves [J].
Zhao, Y. H. ;
Guo, Y. Z. ;
Wei, Q. ;
Topping, T. D. ;
Dangelewicz, A. M. ;
Zhu, Y. T. ;
Langdon, T. G. ;
Lavernia, E. J. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 525 (1-2) :68-77
[20]   Simultaneously increasing the ductility and strength of nanostructured alloys [J].
Zhao, Yong-Hao ;
Liao, Xiao-Zhou ;
Cheng, Sheng ;
Ma, En ;
Zhu, Yuntian T. .
ADVANCED MATERIALS, 2006, 18 (17) :2280-+