Achieving high tensile elongation in an ultra-fine grained Al alloy via low dislocation density

被引:28
作者
Lin, Yaojun [1 ,2 ]
Zhang, Yongan [3 ]
Xiong, Baiqing [3 ]
Lavernia, Enrique J. [4 ]
机构
[1] Yanshan Univ, State Key Lab Metastable Mat Sci & Technol, Qinhuangdao 066004, Hebei, Peoples R China
[2] Yanshan Univ, Coll Mat Sci & Engn, Qinhuangdao 066004, Hebei, Peoples R China
[3] Gen Res Inst Nonferrous Met, State Key Lab Nonferrous Met & Proc, Beijing 100088, Peoples R China
[4] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
关键词
Metals and alloys; Structural nanocrystalline materials; Dislocation; Tensile elongation; Work hardening; Aluminum alloys; SEVERE PLASTIC-DEFORMATION; THERMAL-STABILITY; DUCTILITY; EVOLUTION; STRENGTH; COPPER;
D O I
10.1016/j.matlet.2012.05.046
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An ultra-fine grained (UFG) 5083 Al produced by conventional extrusion of a fine-grained (FG) precursor exhibits a high tensile elongation (15.7% of uniform elongation in engineering strain) and a reasonably high tensile strength. In light of our results, the high tensile elongation is primarily attributable to the low dislocation density (5 x 10(12) m(-2)) in the UFG 5083 Al. The low dislocation density effectively improves the tensile elongation of an UFG material via two possible mechanisms: (i) enhancing the formation of dislocation tangling and (ii) minimizing the possibility of localized shear banding. Moreover, our results suggest that conventional plastic deformation of FG precursor materials provides a feasible approach for the synthesis of UFG materials that contain a low density of dislocations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:233 / 236
页数:4
相关论文
共 20 条
[1]  
[Anonymous], 1993, ASM INT
[2]   Deformation behavior of bimodal nanostructured 5083 Al alloys [J].
Han, BQ ;
Lee, Z ;
Witkin, D ;
Nutt, S ;
Lavernia, EJ .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2005, 36A (04) :957-965
[3]   Hardening by annealing and softening by deformation in nanostructured metals [J].
Huang, XX ;
Hansen, N ;
Tsuji, N .
SCIENCE, 2006, 312 (5771) :249-251
[4]  
Lavernia E.J., 1996, SPRAY ATOMIZATION DE
[5]   Microstructural evolution and nanostructure formation in copper during dynamic plastic deformation at cryogenic temperatures [J].
Li, Y. S. ;
Tao, N. R. ;
Lu, K. .
ACTA MATERIALIA, 2008, 56 (02) :230-241
[6]   Nanostructural hierarchy increases the strength of aluminium alloys [J].
Liddicoat, Peter V. ;
Liao, Xiao-Zhou ;
Zhao, Yonghao ;
Zhu, Yuntian ;
Murashkin, Maxim Y. ;
Lavernia, Enrique J. ;
Valiev, Ruslan Z. ;
Ringer, Simon P. .
NATURE COMMUNICATIONS, 2010, 1
[7]   Thermal stability of 5083 Al synthesized by reactive atomization and deposition [J].
Lin, YJ ;
Zhou, YZ ;
Hayes, RW ;
Lavernia, EJ .
SCRIPTA MATERIALIA, 2004, 51 (01) :71-76
[8]   Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper [J].
Ma, E ;
Wang, YM ;
Lu, QH ;
Sui, ML ;
Lu, L ;
Lu, K .
APPLIED PHYSICS LETTERS, 2004, 85 (21) :4932-4934
[9]   Grain growth and dislocation density evolution in a nanocrystalline Ni-Fe alloy induced by high-pressure torsion [J].
Ni, S. ;
Wang, Y. B. ;
Liao, X. Z. ;
Alhajeri, S. N. ;
Li, H. Q. ;
Zhao, Y. H. ;
Lavernia, E. J. ;
Ringer, S. P. ;
Langdon, T. G. ;
Zhu, Y. T. .
SCRIPTA MATERIALIA, 2011, 64 (04) :327-330
[10]   Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding process [J].
Park, KT ;
Kwon, HJ ;
Kim, WJ ;
Kim, YS .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 316 (1-2) :145-152