On a class of univalent functions

被引:3
作者
Obradovic, M. [2 ]
Ponnusamy, S. [1 ]
机构
[1] Indian Inst Technol, Dept Math, Madras 600036, Tamil Nadu, India
[2] Univ Belgrade, Fac Civil Engn, Dept Math, Belgrade 11000, Serbia
关键词
Coefficient inequality; Analytic; Hadamard convolution; Univalent and starlike functions; CONVOLUTION;
D O I
10.1016/j.aml.2011.12.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let A be the class of analytic functions in the unit disk D with the normalization f(0) = f'(0) - 1 = 0. Denote by N the class of functions f is an element of A which satisfy the condition vertical bar-z(3)(z/f(s))''' + f'(z) (z/f(z))(2) - 1 vertical bar <= 1, z is an element of D. We show the functions in N are univalent in D but not necessarily starlike. Also, we present the characterization of formula, necessary and sufficient coefficient conditions for functions to be in the class N. (C) Elsevier Ltd. All rights reserved.
引用
收藏
页码:1373 / 1378
页数:6
相关论文
共 7 条
[1]   2 THEOREMS ON SCHLICHT FUNCTIONS [J].
FRIEDMAN, B .
DUKE MATHEMATICAL JOURNAL, 1946, 13 (02) :171-177
[2]   Univalence and starlikeness of certain transforms defined by convolution of analytic functions [J].
Obradovic, M. ;
Ponnusamy, S. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) :758-767
[3]   Coefficient characterization for certain classes of univalent functions [J].
Obradovic, M. ;
Ponnusamy, S. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (02) :251-263
[4]  
Obradovic M., 2006, ANAL MUNICH, V25, P183
[5]  
Obradovic M., 2001, Complex Variables Theory Appl, V44, P173
[6]  
Obradovic M, 2011, KODAI MATH J, V34, P169
[7]   Inclusion theorems for convolution product of second order polylogarithms and functions with the derivative in a halfplane [J].
Ponnusamy, S .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (02) :695-733