Uniqueness of nonnegative solutions for semipositone problems on exterior domains

被引:44
作者
Castro, Alfonso [3 ]
Sankar, Lakshmi [2 ]
Shivaji, R. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27412 USA
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
[3] Harvey Mudd Coll, Dept Math, Claremont, CA 91711 USA
关键词
Uniqueness results; Semipositone problems; Exterior domains; A priori estimates; NON-NEGATIVE SOLUTIONS; NON-POSITONE PROBLEMS; POSITIVE SOLUTIONS;
D O I
10.1016/j.jmaa.2012.04.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the problem {-Delta u = lambda K(vertical bar x vertical bar)f (u), x is an element of ohm u = 0 if vertical bar x vertical bar = r(0) u -> 0 as vertical bar x vertical bar -> infinity, where lambda is a positive parameter, Delta u = div(del u) is the Laplacian of u, ohm = {x is an element of R-n; n > 2, vertical bar x vertical bar > r(0)}, K is an element of C-1 ([r(0), infinity), (0, infinity)) is such that lim(r ->infinity) K(r) = 0 and f is an element of C-1 ([0, infinity), R) is a concave function which is sublinear at infinity and f(0) < 0. We establish the uniqueness of nonnegative radial solutions when lambda is large. (c) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:432 / 437
页数:6
相关论文
共 11 条
[1]  
Agarwal Ravi P., 2006, DIFFERENTIAL INTEGRA, V185, P1201
[2]   UNIQUENESS AND STABILITY OF NONNEGATIVE SOLUTIONS FOR SEMIPOSITONE PROBLEMS IN A BALL [J].
ALI, I ;
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 117 (03) :775-782
[3]   Existence results for superlinear semipositone BVP's [J].
Anuradha, V ;
Hai, DD ;
Shivaji, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (03) :757-763
[4]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF RADIALLY SYMMETRIC NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (03) :735-740
[5]   Positive solutions for a concave semipositone Dirichlet problem [J].
Castro, A ;
Shivaji, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 31 (1-2) :91-98
[6]   Positive solution curves of semipositone problems with concave nonlinearities [J].
Castro, A ;
Gadam, S ;
Shivaji, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1997, 127 :921-934
[7]   NON-NEGATIVE SOLUTIONS FOR A CLASS OF NON-POSITONE PROBLEMS [J].
CASTRO, A ;
SHIVAJI, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1988, 108 :291-302
[8]   UNIQUENESS OF NONNEGATIVE SOLUTIONS FOR A SEMIPOSITONE PROBLEM WITH CONCAVE NONLINEARITY [J].
CASTRO, A ;
HASSANPOUR, M ;
SHIVAJI, R .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) :1927-1936
[9]  
Castro A., 1993, RESULTS MATH, V23, P214
[10]   Uniqueness and nonexistence of positive solutions to semipositone problems [J].
Dancer, E. Norman ;
Shi, Junping .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2006, 38 :1033-1044